首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peach stones (PS) modified by citric acid (MPS) were used to remove heavy metals and methylene blue (MB) from wastewater. The effects of experimental factors such as pH, adsorbent dosage and contact time, etc. were conducted. Moreover, the adsorption kinetics and isotherm studies also were investigated. According to the Langmuir isotherm model, the maximum adsorption capacities of Pb2+, Cd2+, Cu2+ and MB were 118.76, 37.48, 32.22 and 178.25 mg/g, respectively. Finally, column experiments were also carried out to investigate the adsorption of Pb2+ and MB. All results indicated that PS has a good potential for the treatment of wastewater.  相似文献   

2.
《分离科学与技术》2012,47(2):222-233
ABSTRACT

In the present work, for the first time, a new carboxylate-functionalized walnut shell (CFWS) was prepared via esterification of walnut shell (WS) with isopropylidene malonate. The characterization of the CFWS by different techniques approved that carboxylic groups were introduced onto the surface of WS. The performance of the modified adsorbent was studied for the removal of Pb2+ ions from aqueous solutions in a batch adsorption system. The analysis data showed that the Langmuir isotherm could satisfactorily explain the equilibrium data, and the maximum adsorption capacity for Pb2+ ions was found to be 192.3 mg g?1 at 0.8 g L?1 of the adsorbent, pH 5.5, and a temprature of 298 K. Two models, namely artificial neural network (ANN) and multiple linear regression (MLR), were used to construct an empirical model for prediction of the removal percentage of Pb2+ ions under different experimental conditions. These models were validated using a test set of 20 data. A comparison between the developed models shows that the ANN model is able to predict the removal percentage of Pb2+ ions more accurately. Consequently, the ANN model could be applied for the design of an automated wastewater remediation plan. Also it has to be noted that the used CFWS was recovered using EDTA-2Na, and employed for the removal of Pb2+ ions from aqueous solutions.  相似文献   

3.
The fabrication of high-efficiency and low-cost adsorbent for the wastewater treatment is a challenging task. In this study, a hollow sphere adsorbent was synthesized from solid waste coal gangue through a facile spray drying method and subsequent calcination. The structure of the synthesized coal gangue microsphere (CM) have been characterized by multimethods including X-ray diffraction, scanning electron microscope, Fourier transform infrared, and others. The factors influencing the adsorption for Cu2+ and Pb2+ by CM were also investigated systemically; pH between 6 and 8 was found to be optimal for Cu2+ and Pb2+ adsorption. The isotherm and kinetic analysis reveal that the adsorption process could be well represented by Langmuir and pseudo–second-order model with a higher R2 and low χ2 value. According to Langmuir model, the maximum adsorption capacity was calculated to be 6.570 and 18.904 mg/g for Cu2+ and Pb2+ at 25°C, respectively. The adsorption mechanism was proposed to contain not only the surface reaction process, but also the diffusion process. Consequently, the economic and environmental benefits make CM a promising adsorbent in wastewater treatment.  相似文献   

4.
In this research, metal-organic framework MOF(HKUST-1) was synthesized, magnetized and modified by hexacyanoferrate in order to prepare an efficient adsorbent for the removal of Sr2+ from aqueous solutions. The synthesized adsorbent was characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy, thermal methods (TG-DTG[Themogravimetry- Derivative Theromogravimetry]), Fourier transform infrared (FTIR) spectroscopy, Brunauer–Emmett–Teller (BET) surface area and scanning electron microscopy (SEM). The non-magnetized (MOF/KNiFC[potassium nickel hexacyanoferrate]) and magnetized (MOF/Fe3O4/KNiFC) adsorbents were then employed for the removal of Sr2+ from aqueous solutions. The adsorption capacity of 110 and 90 mg.g?1 was obtained, respectively, for MOF/KNiFC and MOF/Fe3O4/KNiFC. The adsorption process was kinetically fast and the equilibration was established within 45 min. The magnetic capability of the adsorbent examined by the vibrating sample magnetometer (VSM) technique indicated that the used adsorbent was capable of separating from the solution by applying an external magnetic field. The adsorbent showed good selectivity toward Sr2+ in the presence of Cs+, Na+, Mg2+, Ca2+ and Ba2+. The regenerated adsorbent retained more than 90% of its initial capacity. Different isotherm models including Langmuir, Freundlich, Tempkin, Sips and Redlich–Peterson were employed to examine the applicability of the isotherms to the experimental data. It was concluded that the data was best fitted to the Langmuir isotherm model. The thermodynamic parameters showed that the process was endothermic.  相似文献   

5.
The use of a polysaccharide extract isolated from cactus pads (Opuntia ficus indica) as a low‐cost adsorbent for the removal of Pb2+ and Cd2+ from water was investigated. The Brunauer?Emmett?Teller study showed that the surface area of the extract powder was approximately 2.373 m2/g. Inductively coupled plasma optical emission spectrometry was used to monitor changes in ion concentrations during the adsorption. The adsorption mechanism was studied as a function of physicochemical variables such as initial metal ion concentration, adsorbent dosage, contact time, and pH of the solution. The results indicated that the adsorption percentage of the two cations increased with contact time, attaining equilibrium at 150 and 120 min for Cd2+ and Pb2+, respectively. At these optimal times, the adsorption capacity of Pb2+ and Cd2+ increased with increasing pH. Langmuir, Freundlich, Toth, Dubinin–Radushkevich, Sips, and Redlich–Peterson isotherm models were thereafter applied to understand the adsorption mechanism. The qe plot against Ce for the Toth isotherm model had the best fit with low error values and the highest correlation coefficient (R2) values of 0.9973 and 0.9953 for Pb2+ and Cd2+, respectively. Therefore, the isotherm study reveals that the adsorption mechanism involved is complex because of the presence of different interactions (such as ionic exchange and coagulation), yielding maximum adsorption capacities of 256 and 151 gm/L for Pb2+ and Cd2+, respectively. Generally, the polysaccharide extract exhibited higher adsorption capacity of Pb2+ than of Cd2+ under similar conditions. Besides the removal capacities reported in this study, the adsorbent regeneration and its reusability was also investigated. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43913.  相似文献   

6.
In this study, L-cystein modified bentonite-cellulose (cellu/cys-bent) nanocomposite was synthesized and characterized by XRD, FTIR, SEM with EDS, TGA, and TEM techniques. In order to optimize the process the effect of various operational parameters such as pH, adsorbent dosage, contact time, and temperature were also investigated. The adsorption experiments were carried out in initial concentrations range of 20-100 mg L?1and the adsorbent affinity for metal ions was found to be in order of Cu2+ > Pb2+ > Cd2+. The optimum pH for adsorption of Cu2+ and Cd2+ was observed at 5 while for Pb2+ it was pH 6. Based on the Langmuir model, the maximum adsorption capacity of Cu2+, Pb2+, and Cd2+ at 50?C was found to be 32.36, 18.52, and 16.12 mg g?1, respectively. The Langmuir isotherm and pseudo-second order model were found to be better fitted than the other isotherms and kinetic models. The results of thermodynamic parameters confirmed the process to be endothermic and spontaneous in nature.  相似文献   

7.
《分离科学与技术》2012,47(9):1334-1340
This study examined the sorption and desorption behaviors of Cu2+ and Pb2+ ions, which were adsorbed on the vinyl benzene chloride divinylbenzene (VBC-DVB-OH) polymer and magnetic hybrid adsorbent (VBC-DVB-OH-Fe) at pH 5. Batch and fixed bed column experiments were performed to study practical applicability and the breakthrough curves were obtained. The experimental equilibrium data, suitably fitted by the Langmuir and Freundlich isotherms, have shown that ferric oxide loaded magnetic hybrid sorbent (VBC-DVB-OH-Fe) exhibits higher adsorption capacity than vinyl benzene chloride divinylbenzene (VBC-DVB-OH) polymer. The results indicate the following order to fit the isotherms for both metal ions: Langmuir > Freundlich for polymeric sorbent and Freundlich > Langmuir for VBC-DVB-OH-Fe. The maximum adsorption capacity of VBC-DVB-OH adsorbent is 26.39 mg/g for Pb2+ and 7.93 mg/g for Cu2+ whereas it is increased to 45.81 mg/g for Pb2+and 25.64 mg/g for Cu2+ by using VBC-DVB-OH-Fe adsorbent. A series of column experiments were carried out to determine the breakthrough curves. The regeneration efficiency of the column runs was determined using HCl (10% v/v). The elution efficiency was 90% for each adsorbent.  相似文献   

8.
《分离科学与技术》2012,47(2):290-299
A novel adsorbent: Fe2+-modified vermiculite was prepared in a two-step reaction. Adsorption experiments were carried out as a function of pH, contact time, and concentration of Cr(VI). It was found that Fe2+-modified vermiculite was particularly effective for the removal of Cr(VI) at pH 1.0. The adsorption of Cr(VI) reached equilibrium within 60 min, and the pseudo-second-order kinetic model best described the adsorption kinetics. The adsorption data follow the Langmuir model more than the Freundlich model. At pH 1.0, the maximum Cr(VI) sorption capacity (Q max ) was 87.72 mg · g?1. Desorption of Cr(VI) from Fe2+-modified vermiculite using NaOH treatment exhibited a higher desorption efficiency by more than 80%. The sorption mechanisms including electrostatic interaction and reduction were involved in the Cr (VI) removal. The results showed that Fe2+-modified vermiculite can be used as a new adsorbent for Cr(VI) removal which has a higher adsorption capacity and a faster adsorption rate.  相似文献   

9.
《分离科学与技术》2012,47(16):2539-2548
S-doped TiO2 as a novel adsorbent for Cu2+ cations removal from aqueous solutions was synthesized by simple sol-gel process. Removal of Cu2+ cations from aqueous solutions was investigated with particular reference to the effects of initial Cu2+ cations concentration, pH-value, adsorbent dosage, and temperature on adsorption. It was found that the maximum adsorption capacity was 96.35 mg g?1 at 328 K. The adsorption equilibrium isotherms and the kinetic data were well described by the Langmuir and pseudo-second-order kinetic models, respectively. The high uptake capability of S-doped TiO2 makes it a potentially attractive adsorbent for the removal of heavy metal pollutants from aqueous solution.  相似文献   

10.
In this study, the preparation and characterization of the novel pH-sensitive poly(acrylamide-co-2-methacryloyloxy)ethyltrimethyl ammonium chloride)/montmorillonite (p(AAm-co-METAC)/MMT) composite superabsorbent hydrogels and their selective metal absorbtion properties were investigated. The adsorption of metal ions is highly dependent on the initial feed concentration, contact time, pH of the metal solution and adsorbent doses. The results were analyzed both by the Langmuir and Freundlich isotherms and the adsorption is found to follow pseudo-second-order kinetics. The adsorption capacity followed the order Zn2+ > Ni2+ > Cu2+ > Pb2+ and the maximum adsorption capacities of them were ~320, 285, 240 and 120 (mg g?1), respectively.  相似文献   

11.
Organofunctionalized nanostructured silica SBA-15 with tri(2-aminoethyl)amine tetradentate-amine ligand was synthesized and applied as adsorbent for the removal of Cu2+, Pb2+, and Cd2+ from both synthetic wastewater and real paper mill and electroplating industrial effluents. The prepared materials were characterized by XRD, N2 adsorption-desorption, TGA, and FT-IR analysis. The Tren-SBA-15 was found to be a fast adsorbent for heavy metal ions from single solution with affinity for Cu2+, Pb2+, than for Cd2+ due to the complicated impacts of metal ion electronegativity. The kinetic rate constant decreased with increasing metal ion concentration due to increasing of ion repulsion force. The equilibrium batch experimental data is well described by the Langmuir isotherm. The maximum adsorption capacity was 1.85 mmol g?1 for Cu2+, 1.34 mmol g?1 for Pb2+, and 1.08 mmol g?1 for Cd2+ at the optimized adsorption conditions (pH=4, T=323 K, t=2 h, C0=3 mmol L?1, and adsorbent dose=1 g L?1). All Gibbs energy was negative as expected for spontaneous interactions, and the positive entropic values from 103.7 to 138.7 J mol?1 K?1 also reinforced this favorable adsorption process in heterogeneous system. Experiment with real wastewaters showed that approximately a half fraction of the total amount of studied metal ions was removed within the first cycle of adsorption. Hence, desorption experiments were performed by 0.3M HCl eluent, and Tren-SBA-15 successfully reused for four adsorption/desorption cycles to complete removal of metal ions from real effluents. The regenerated Tren-SBA-15 displayed almost similar adsorption capacity of Cu2+, Pb2+, and Cd2+ even after four recycles. The results suggest that Tren-SBA-15 is a good candidate as an adsorbent in the removal of Cu2+, Pb2+, and Cd2+ from aqueous solutions.  相似文献   

12.
Reusability and selective adsorption toward Pb2+ with the coexistence of Cd2+, Co2+, Cu2+ and Ni2+ ions on chitosan/P(2-acrylamido-2-methyl-1-propanesulfonic acid-co-acrylic acid) [CS/P(AMPS-co-AA)] hydrogel, a multi-functionalized adsorbent containing –NH2, –OH, –COOH and –SO3H groups was studied. The CS/P(AMPS-co-AA) was prepared in aqueous solution by a simple one-step procedure using glow discharge electrolysis plasma technique. The reusability of adsorbent in HNO3, EDTA-2Na and EDTA-4Na was investigated in detail. The competitive adsorption of the metal ions at the initial stage was compared between their equal mass concentration and equal molar concentration. In addition, the adsorption mechanism of the adsorbent for adsorption of Pb2+ was also analyzed by XPS. The results showed that the optimum pH of adsorption was 4.8, and time of adsorption equilibrium was about 180 min. Adsorption kinetics fitted well in the pseudo second-order model. The equilibrium adsorption capacities of Pb2+, Cd2+, Co2+, Cu2+, and Ni2+ at pH 4.8 were obtained as 673.3, 358.3, 176.7, 235.0 and 171.7 mg g?1, in their given order. The adsorbent displayed an excellent reusability using 0.015 mol L?1 EDTA-4Na solution as the eluent, and the desorption ratio could not correctly reflect the true characteristics of adsorption/desorption process. Moreover, the adsorbent showed good adsorption selectivity for Pb2+. The molar adsorption capacity at the initial stage with equal molar concentration was more reliable than the mass adsorption capacity during the study of selective adsorption. According to the XPS results, the adsorption of Pb2+ ions by the CS/P(AMPS-co-AA) absorbent could be attributed to the coordination between N atom and Pb2+ and ion-exchange between Na+ and Pb2+.  相似文献   

13.
H. Ge  X. Fan 《化学工程与技术》2011,34(10):1745-1752
A novel activated carbon‐chitosan complex adsorbent (ACCA) was prepared via the crosslinking of glutaraldehyde and activated carbon‐(NH2‐protected) chitosan complex under microwave irradiation. The surface morphology of this adsorbent was characterized. The adsorption of ACCA for Pb2+ and Cd2+ was investigated. The results demonstrate that ACCA has higher adsorption capacity than chitosan. The adsorption follows pseudo first‐order kinetics. The isotherm adsorption equilibria are better described by Freundlich and Dubinin‐Radushkevich isotherms than by the Langmuir isotherm. The adsorbent can be recycled. These results have important implications for the design of low‐cost and effective adsorbents in the removal of heavy metal ions from wastewaters.  相似文献   

14.
《分离科学与技术》2012,47(3):591-609
Abstract

The aniline moiety was covalently grafted onto silica gel surface. The modified silica gel with aniline groups (SiAn) was used for removal of Cu(II), Fe(III), and Cr(III) ions from aqueous solution and industrial effluents using a batch adsorption procedure. The maximum adsorption of the transition metal ions took place at pH 4.5. The adsorption kinetics for all the adsorbates fitted better the pseudo second‐order kinetic model, obtaining the following adsorption rate constants (k2): 1.233 · 10?2, 1.902 · 10?2, and 8.320 · 10?3 g · mg?1 min?1 for Cr(III), Cu(II), and Fe(III), respectively. The adsorption of these transition metal ions were fitted to Langmuir, Freundlich, Sips, and Redlich‐Peterson isotherm models; however, the best isotherm model fitting which presented a lower difference of the q (amount adsorbed per gram of adsorbent) calculated by the model from the experimentally measured, was achieved by using the Sips model for all adsorbates chosen. The SiAn adsorbent was also employed for the removal of the transition metal ions Cr(III) (95%), Cu(II) (95%), and Fe(III) (94%) from industrial effluents, using the batch adsorption procedure.  相似文献   

15.
《分离科学与技术》2012,47(1):164-178
Abstract

The adsorption of different metal ions on acrylamidezirconium (IV) arsenate has been studied. The effect of surfactant concentration (Tween 80‐R and Tritron X‐100) on sorption of different metal ions acrylamidezirconium (IV) arsenate was explored. The effect of experimental parameters such as contact time, temperature, and pH on adsorption of Pb2+ions was studied. The promising feature of the material is its specificity for Pb2+ ions. A new PVC based Pb2+ ion‐selective electrode using acrylamidezirconium (IV) arsenate as electro‐active material has been fabricated. The electrode works well over a wide range of concentration 1×10?1 M–1×10?7 M with a Nerstian slope of 30±1 mV per decade. The sensor shows the short response time of 20 seconds and can operate in the pH range of 2–7. The sensor can be used for the period of over 4 months with out deviation in response characteristics. The electrode has been successfully used as an indicator electrode for potentiometric titration of Pb2+ ions in solution against EDTA solution.  相似文献   

16.
The efficient removal of lead (II) from aqueous solution remains a big problem and the development of novel nanomaterials as adsorbents by various technologies to solve this problem is promising. This study contributed a novel nanostructure of MIL-88A-layered double hydroxides (LDHs) as the adsorbent for Pb2+, which was synthesized by a two-step solvothermal method with MIL-88A(Fe) as the precursor. The as-prepared material featured a chestnut-like core-shell structure, and exhibited excellent removal performance towards Pb2+ from water in comparison to MIL-88A(Fe) and LDHs (directly synthesized). The adsorption of Pb2+ by the MIL-88A-LDHs conformed to the pseudo-second-order kinetic model and the Langmuir and Freundlich isotherm models. The maximal adsorption capacity was 526.32, 625.00, and 909.09 mg g−1 at 278, 298, and 318 K, respectively. The thermodynamic parameters suggested that the adsorption was an endothermic, entropy-increasing, and spontaneous reaction. X-ray photoelectron spectroscopy (XPS) analysis indicated that the surface complexation was mostly responsible for Pb2+ elimination. The MIL-88A-LDHs can be readily regenerated and showed good cyclic performance towards Pb2+. Thus, the as-prepared MIL-88A-LDHs may hold promise for the elimination of aqueous heavy metals.  相似文献   

17.
A kind of adsorbent for metal ions, cotton fiber coated by high loading of chitosan (SCCH) was prepared. Its structure was characterized by elemental analysis, scanning electronic microscopy (SEM), Fourier transform infrared spectrum (FTIR), and wide‐angle X‐ray diffraction (WAXD). The adsorption properties of SCCH for Cu2+, Ni2+, Pb2+, Cd2+, such as saturated adsorption capacities, static kinetics, and isotherm were investigated. The adsorption for Ni2+, Pb2+, and Cd2+ was controlled by liquid film diffusion, but by particle diffusion for Cu2+. The adsorption process for Cu2+, Ni2+, Cd2+ could be described with Langmuir or Freundlich equation, but only with Freundlich equation for Pb2+. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
《分离科学与技术》2012,47(2):277-287
Competitive adsorption of Ag+, Pb2+, Ni2+, and Cd2 ions on vermiuculite in a binary, ternary, and quaternary mixture was investigated in batch experiments. The effects of the presence of Ag+, Ni2+, and Cd2+ ions on the adsorption of Pb2+ ions were investigated in terms of the equilibrium isotherm. Experimental results indicated that Pb2+ ions always favorably adsorbed on vermiculite over Ag+, Ni2+, and Cd2+ ions. The adsorption equilibrium data of Pb2+ ions better fitted the Langmuir model than the Freundlich model. The results showed that the pseudo-second-order kinetics model was in good agreement with the experimental results for all metal ions, and the adsorption rate among the metal ions followed Ag+ > Pb2+ > Ni2+ > Cd2+. The desorption and regenration study indicated that vermiculite can be used repeatedly and be suitable for the design of a continuous process.  相似文献   

19.
The ZnO/ZnMn2O4 nanocomposite (ZnMn) was used as adsorbent for the removal of cationic dye Basic Yellow 28 (BY28) from aqueous solutions. The adsorbent was characterized by X-ray diffraction, scanning electron microscope, TEM, Fourier transform infrared ray, BET, particle size distribution and zeta potential measurements. The adsorption parameters, such as temperature, pH and initial dye concentration, were studied. Kinetic adsorption data were analyzed using the pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models. The Langmuir and Freundlich isotherm models were applied to fit the equilibrium data. The maximum adsorption capacity of BY28 was 48.8 mg g?1. Various thermodynamic parameters, such as ΔG°, ΔH° and ΔS°, were calculated.  相似文献   

20.
《分离科学与技术》2012,47(1):203-222
Abstract

The decontamination of lead ions from aqueous media has been investigated using styrene‐divinylbenzene copolymer beads (St‐DVB) as an adsorbent. Various physico‐chemical parameters such as selection of appropriate electrolyte, contact time, amount of adsorbent, concentration of adsorbate, effect of foreign ions, and temperature were optimized to simulate the best conditions which can be used to decontaminate lead from aqueous media using St‐DVB beads as an adsorbent. The atomic absorption spectrometric technique was used to determine the distribution of lead. Maximum adsorption was observed at 0.001 mol L?1 acid solutions (HNO3, HCl, H2SO4 and HClO4) using 0.2 g of adsorbent for 4.83×10?5 mol L?1 lead concentration in two minutes equilibration time. The adsorption data followed the Freundlich, Langmuir, and Dubinin‐Radushkevich (D‐R) isotherms over the lead concentration range of 1.207×10?3 to 2.413×10?2 mol L?1. The characteristic Freundlich constants i.e. 1/n=0.164±0.012 and A=2.345×10?3±4.480×10?5 mol g?1 have been computed for the sorption system. Langmuir isotherm gave a saturated capacity of 0.971±0.011 mmol g?1, which suggests monolayer coverage of the surface. The sorption mean free energy from D‐R isotherm was found to be 18.26±0.75 kJ mol?1 indicating chemisorption involving chemical bonding for the adsorption process. The uptake of lead increases with the rise in temperature. Thermodynamic parameters i.e. ΔG, ΔH, and ΔS have also been calculated for the system. The sorption process was found to be exothermic. The developed procedure was successfully applied for the removal of lead ions from real battery wastewater samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号