首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

A new unsymmetrical diglycolamide, N,N-di-2-ethylhexyl-N',N'-di-octyl-3-oxapentane-1,5-diamide, trivially known as di-ethylhexyl-di-octyl-diglycolamide (DEHDODGA) has been synthesized, and characterized by 1H, and 13C nmr, mass, and IR spectroscopy. Extraction behavior of 241Am(III), (152+154)Eu(III), 239Pu(III), 239Pu(IV), 233U(VI), 137Cs(I), and (85+89)Sr(II) from nitric acid medium by a solution of DEHDODGA in n-dodecane was studied, at 298–333 K. The effect of concentrations of HNO3 and DEHDODGA and of temperature on the distribution ratio (D M) was studied. Extraction of Eu(III), Am(III), Pu(III), and Pu(IV) increased with increase in nitric acid concentration, and the distribution ratio of Cs(I) was insignificant. However, the distribution ratios of U(VI) and Sr(II), though not insignificant, but was quite less compared to trivalents, and Pu(IV). The D Sr(II) increased with increase in the concentration of nitric acid, reaching a maximum at 4 M followed by decrease. The stoichiometry of Am(III) – DEHDODGA was determined by slope analysis of extraction data, and the enthalpy change accompanied by the extraction of Eu(III), Pu(III), and Am(III) was determined and reported in this article.  相似文献   

2.
《分离科学与技术》2012,47(10):1261-1279
Abstract

A new series of neutral bifunctional extractants, alkyl(phenyl)-N,N-dialkylcarbamoylmethylphosphine oxides, has been prepared and studied as extractants for Am(III) from nitric acid media. Two types of alkyl(phenyl)-N,N-dialkyl CMPO compounds were prepared, one containing N,N-diethyl groups and the other containing N,N-diisobutyl groups. The N,N-diethyl series contained hexyl(phenyl) and 6-methylheptyl(phenyl) derivatives, abbreviated HφDECMPO, and 6-MHφDECMPO, respectively. The N,N-diisobutyl series contained the n-octyl(phenyl), 6-methylheptyl(phenyl), and the 2-ethylhexyl(phenyl) derivatives, abbreviated OφD[IB]CMPO, 6-MHφD[IB]CMPO, and 2-EHφD[IB]CMPO, respectively. Third power extractant dependencies for the extraction of Am(III) from 0.5 and 3 M HNO3 were obtained at low (<0.25 M) concentrations of extractant, but higher power dependencies were obtained above 0.25 M extractant from 3 M HNO3. The HφDECMPO, 6-MHφDECMPO, 6-MHφD[IB]CMPO, and OφD[IB]CMPO [all 0.5 M in diethylbenzene (DEB)] are significantly better extractants than DHDECMPO for Am(III) from 1 to 6 M HNO3. These same extractants have lower D Am values than DHDECMPO at low acidities. HφDECMPO and OφD[IB]CMPO also have better selectivity for Am(III) over Fe(III) than DHDECMPO. HφDECMPO in DEB has a strong tendency toward the formation of a second liquid organic phase on extracting macroconcentrations of Nd(III) and U(VI) from 3 M HNO3; however, this behavior is substantially diminished with the OφD[IB]CMPO and 6-MHφD[IB]CMPO compounds.  相似文献   

3.
Abstract

Extraction of Eu(III) and Am(III) from HNO3 into the organic solvents using N,N,N′,N′‐tetraoctyl‐diglycolamide (TODGA) was investigated in order to study the detailed extraction reaction. The chemical species: 1:2 for metal:TODGA complex is present in polar diluents. On the other hand, the metal complexes need three or more TODGA molecules to remain stable in non‐polar diluents. The HNO3 concentration dependence on the distribution ratio suggests that HNO3 participates in the metal extraction. Infrared spectra indicate that the carbonyl oxygen coordinates with Eu(III), and luminescence lifetimes suggest that there are no water molecules in the inner coordination sphere of the extracted Eu‐complex.  相似文献   

4.
Studies on the recovery of trivalent metal ions such as Nd3+Eu3+ (taken as homologs of Am(III)) from solid oxide (Nd2O3), Thorium concentrate (obtained from Monazite ore processing), tissue paper/surgical gloves (rubber), and plant samples have been carried out by supercritical fluid extraction (SFE) using supercritical CO2 and ethanol/nitric acid. N,N,N,N’-tetraoctyl diglycolamide (TODGA) was used as the extractant in these studies. The results showed that the recovery of Nd increased with TODGA concentration from 50% (no TODGA) to 70% (10% TODGA) at 3 M HNO3 in ethanol. However, the extraction of Nd at 1 M HNO3 was invariant with 1-3% (v/v) TODGA concentration (73 ± 4%). Interestingly, REEs recovery from Th concentrate was ? 60% even without TODGA using ethanol/3 M HNO3 mixture. On the other hand, quantitative recovery of 152,154Eu from tissue paper and surgical gloves sample could be achieved using 3 M HNO3/ethanol mixture. This suggested that it would be possible to decontaminate the contaminated laboratory waste papers using SFE technique.  相似文献   

5.
《分离科学与技术》2012,47(18):2927-2932
A malonamide based extractant, i.e., N,N′-dimethyl-N,N′-dicyclohexyl-malonamide (DMDCMA) was synthesized in a single step and tested for the extraction of several actinide ions such as Am(III), U(VI), Np(IV), Np(VI), Pu(IV), Pu(VI), etc., from nitric acid medium. The extractant was soluble in phenyltrifluoromethylsulphone (PTMS or FS-13) unless stated otherwise. The effect of various experimental parameters, such as the aqueous phase acidity (0.01–3 M HNO3), nature of the acid, oxidation states of the metal ions, ligand concentration, nature of the diluent and temperature on the extraction behavior of metal ions was studied. The extracted Am(III) species was determined from slope analysis method as [Am(NO3)3(DMDCMA)2]. The extraction of the metal ions was found to increase with the aqueous phase acidity. The temperature variation studies allowed the calculation of the heat of the two-phase extraction reaction as well as the corresponding extraction constants. These studies revealed that DMDCMA showed good extraction for all the actinide metal ions investigated, and have the advantage of single stage synthesis and easier purification protocol.  相似文献   

6.
Abstract

Thermodynamic parameters (ΔG, ΔH, and ΔS) for the extraction of trivalent f-elements, M(III) (M = Am, Eu), with N,N,N',N'-tetraoctyl-3-oxapentane-1,5-diamide (TODGA) were determined in nitric acid/n-dodecane extraction system. The extraction of M(III) with TODGA was more exothermic than those with octyl(phenyl)-N,N-diisobutylcarbamoylmethyl phosphine oxide (CMPO) and dihexyl-N,N-diethylcarbamoylmethyl phosphonate (DHDECMP). The difference in ΔH between the extractants was attributed to the difference in the binding mode between them, i.e. tridentate (TODGA) and bidentate (CMPO and DHDECMP). In addition, from the results of luminescence lifetime measurement, it was found that the inner-sphere of extracted Eu(III) was dehydrated completely, and occupied by TODGA and/or NO3 ?.  相似文献   

7.
Bisdiglycolamides 1–9 were synthesized and studied as extracting agents for An(III) and Ln(III) from nitric acid solutions. Compounds 1d3 with rigid spacers as m‐xylylene and 6b9 with more flexible alkyl chain linkers, show higher selectivity for Eu(III) extraction over Am(III) than diglycolamides (TBDGA, DMDODGA, TODGA) in (50:50)%Vol HPT/1‐octanol mixture. Am(III) and Eu(III) extraction kinetics are very fast and back‐extraction with more than 99% efficiency of both cations is possible after four times of contact of the loaded solvent with fresh 0.01 mol/L nitric acid solutions.  相似文献   

8.
i-SANEX is a process for separating actinides(III) from used nuclear fuels by solvent extraction: Actinides(III) and lanthanides(III) are co-extracted from a PUREX raffinate followed by selective back extraction of actinides(III) from the loaded organic phase. This step requires a complexing agent selective for actinides(III). A hydrophilic sulfonated bis triazinyl pyridine (SO3-Ph-BTP) was synthesized and tested for selective complexation of actinides(III) in nitric acid solution. When co-extracting Am(III) and Eu(III) from nitric acid into TODGA, adding SO3-Ph-BTP to the aqueous phase suppresses Am(III) extraction while Eu(III) is extracted. Separation factors in the range of 1000 are achieved. SO3-Ph-BTP remains active in nitric acid up to 2 mol/L. As a result of this performance, buffering or salting-out agents are not needed in the aqueous phase; nitric acid is used to keep the lanthanides(III) in the TODGA solvent. These properties make SO3-Ph-BTP a suitable candidate for i-SANEX process development.  相似文献   

9.
《分离科学与技术》2012,47(8):1186-1191
The extraction behavior of Am(III) and Eu(III) in a solution of tetra-octyldiglycolamide (TODGA), bis(2-ethylhexyl)phosphoric acid (HDEHP), and n-dodecane (n-DD) was studied to understand the role of TODGA and HDEHP in the combined solvent system. The extraction behavior of these metal ions was compared with those observed in TODGA/n-DD and HDEHP/n-DD. The effect of various parameters such as concentrations of HNO3, TODGA, and HDEHP on the distribution ratio of Am(III) and Eu(III) was studied. Synergistic extraction of both the metal ions observed at lower acidities (<2.0 M) was attributed to the involvement of TODGA and HDEHP for extraction. However, the extraction of Am(III) and Eu(III) in the combined solvent was comparable with that observed in TODGA at higher acidities. The slope analysis of the extraction data confirmed the involvement of both the extractants at all acidities investigated in the present study.  相似文献   

10.
Abstract

The extraction of actinides, fission products, some non-nuclear elements, and nitric acid by N,N,N′,N′-tetraoctyl-3,6-dioxaoctanediamide (DOODA-C8) in dodecane was extensively studied. Also studied was the extraction of HNO3 and Nd(III) by the tetradodecyl analog of DOODA-C8 in dodecane. Both extractants contain two ether oxygen atoms in the backbone chain carrying the two amide groups and can thus act as tetradentate ligands. The extractability of actinides decreases in the order Pu(IV) > U(VI), Am(III) > Np(V) in the extraction from nitric acid and Pu(IV) > Am(III) >> U(VI) in the extraction from perchloric acid. Ions of di-, tri-, tetra-, hexa-, and heptavalent metals strongly differ in the extractability by DOODA-C8 but, except for lanthanides(III), there is no visible correlation of their distribution ratios with ionic radii. Due to the efficient extraction of actinides, weak extraction of fission products, and sufficient extraction capacity, DOODA-C8 is a promising extractant for the recovery of minor actinides from high-level radioactive wastes.  相似文献   

11.
Iron oxide (Fe3O4) particles functionalized with diglycolamic acid (Fe-DGAH) were synthesized and characterized by TG-DTA, X-Ray diffraction,1H NMR, and scanning electron microscopy (SEM). The extraction behavior of Am(III) and Eu(III) in Fe-DGAH was studied from dilute nitric acid medium to examine the feasibility for the mutual separation of trivalent actinides and lanthanides using Fe-DGAH. For this purpose, the effect of various parameters such as the duration of equilibration and concentrations of europium, nitric acid, and diethylenetriaminepentaacetic acid (DTPA) in the aqueous phase on the distribution ratio (Kd) of Am(III) and Eu(III) was studied. The conditions needed for the efficient separation of Am(III) from Eu(III) were optimized using DTPA. The distribution ratio of ?104 mL/g was obtained for both Am(III) and Eu(III) at pH 3, and it decreased with an increase in the concentration of nitric acid. However, a separation factor of Eu(III) over Am(III) of ?150 was achieved in the presence of DTPA. Rapid sorption of metal ions in the initial stages of equilibration followed by the establishment of equilibrium occurred within 2 h. The sorption data were fitted to the Langmuir adsorption model, and the apparent europium sorption capacity was determined to be ?50 mg/g. The study indicated the feasibility of using Fe-DGAH particles for magnetic separation of Eu(III) from Am(III) with high separation factors.  相似文献   

12.
Suitable N.N'-tetraalkylmalonamldes for Am(III) extraction from concentrated HNO3 aqueous liquors have been selected. Extraction mechanisms of Eu(III) and Am(III) by NN'-dlmethyldioctylmalonamide (DMDOMA) have been investigated. The distributions ratios of Am(III) and Eu(III) between 1M DMDOMA in t-butylbenzene and per chloric acid are higher than those obtained In nitrate media. Extraction data for Pu)IV), U(VI), Fe(III), Zr(IV) are reported. From these results It can be concluded that the NN'-dlmethyldlal-kylmalonamldes are good extractants for the actinides contained in the radioactive wastes.  相似文献   

13.
ABSTRACT

Solvent extraction of Eu(III) and Am(III) from weakly acidic solutions with octyl(phenyl)-N, N-diisobutylcarbamoylmethylphosphine oxide (CMPO) and 2,6-bis((diphenylphosphino)methyl)pyridine N, P, P-trioxide (NOPOPO) in 1,2-dichloroethane was studied on a comparative basis. NOPOPO was found to exhibit unusually high extractability for Eu(III) and Am(III), probably due to its trifunctional nature, sufficient steric flexibility and basicity of the functional groups. Both CMPO and NOPOPO demonstrated synergistic effects in extraction of Eu(III) and Am(III) when used in combination with thenoyltrifluoroacetone (HTTA). However, the stoichiometry of the extracted species with CMPO/HTTA and NOPOPO/HTTA was different under similar experimental conditions. The extractant dependencies of the synergistic extractions suggest that the extracted species are the adduct complexes, M(ClO4)(TTA)2(CMPO)2 and M(ClO4)2(TTA)(NOPOPO)2, respectively. It was also observed that CMPO and CMPO/HTTA in dichloroethane extracted Eu(III) and Am(III) equally well, with very similar extraction constants. However, NOPOPO and NOPOPO/HTTA in dichloroethane demonstrated a slight preference for Eu(III) over Am(III), with the extraction constants for Eu(III) more than one order of magnitude higher than that for Am(III).  相似文献   

14.
《分离科学与技术》2012,47(5):646-653
The organic solvent phase composed of N,N,N’,N’-tetra-2-ethylhexyl diglycolamide (TEHDGA) and bis(2-ethylhexyl)phosphoric acid (HDEHP) in n-dodecane (n-DD) is regarded as a promising candidate for single-cycle separation of americium (III) from high-level liquid waste. The radiochemical degradation of a solution of TEHDGA + HDEHP/n-DD was investigated by irradiating the solvent to various absorbed dose levels of γ-radiation. The neat extractants or a solution of extractants in n-dodecane were irradiated in the presence and absence of nitric acid. The degree of degradation was assessed by measuring the variation in the extraction behavior of Am(III), Eu(III) and other metal ions in irradiated solvent systems. The distribution ratio of americium and europium decreased with increase of absorbed dose. The presence of n-dodecane enhanced the radiolytic degradation of the solvent; however, the role of nitric acid during degradation was insignificant. The recovery of Am(III) and Eu(III) from the irradiated solvent system was studied. The recovery of Am(III) was quantitative in 3 contacts; however, the separation factor of Eu(III) over Am(III) during stripping decreased marginally with increase of absorbed dose.  相似文献   

15.
A new N-donor extractant, 6,6ˊ-bis(1-(2-ethylhexyl)-1H-1,2,3-triazol-4-yl)-2,2ˊ-bipyridine (EH-BTzBP), was synthesized and tested for Am(III)/Ln(III) extraction and separation. EH-BTzBP in combination with 2-bromohexanoic acid (as lipophilic anion source) selectively extracts Am(III) from acidic solutions (HNO3 ≤ 0.1M) with Am(III)/Eu(III) separation factors of about 70. Phase transfer kinetics is rapid, back-extraction of metal ions posed no issues, and there is no evidence of ligand degradation by acid hydrolysis or contact with hydrogen peroxide (which simulates some effects of radiolysis).  相似文献   

16.
A series of long chain disubstituted aliphatic amides have been prepared with different substituting groups and the extracting ability for U(VI), Th(IV) and some fission products like Am(III), Zr(IV), Eu(III) and Cs from nitric acid solutions has been studied. All results were compared with those obtained by using TBP under the same conditions. All prepared amides exhibit higher U-Th separation factors than TBP. Distribution ratios of U(VI) as function of nitric acid concentration, extractants concentration and salting-out agent have been measured by using N,N-dihexyloctanamide (DHOA) and N,N-dihexyl(2-ethyl)hexylhexanamide (DHEHA), which were chosen for further studies. The extraction behviour of U(VI), Th(IV) and Zr(IV) with gamma irradiated DHOA, DHEHA and TBP in toluene from 3 M HNO3 has been studied as a function of absorbed doses. Back extraction of U(VI), Th(IV) and Zr(IV) from organic phases was also studied.  相似文献   

17.
Abstract

The synthesis and evaluation of solvent extraction performance of N,N,N′,N′-tetraalkyl-6,6″-(2,2′:6′,2″-terpyridine)diamides and N,N′-diethyl-N,N′-diphenyl-6,6″-(2,2′:6′,2″-terpyridine)diamide are reported here. These new bitopic ligands were found to extract actinides in different oxidation states (U(VI), Np(V and VI), Pu(IV), Am(III), and Cm(III)) from 3 M nitric acid. The presence of three soft nitrogen donors led to the selective extraction of actinides(III) over lanthanides(III) (Ce, Eu) and the presence of two amide functional groups grafted to the terpyridine unit allowed the extraction to occur from a highly acidic medium by minimizing the basicity of the ligand. Ligands bearing long alkyl chains (C4 and C8) or phenyl groups showed increased performances in a polar diluent like nitrobenzene.  相似文献   

18.
《分离科学与技术》2012,47(12):1941-1949
Studies on the solvent extraction and pertraction behavior of europium(III) was carried out from acidic feed solutions using N,N,N′,N′-tetra-2-ethylhexyl-3-oxapentane-diamide (T2EHDGA) in n-dodecane as the solvent. The nature of the extracted species from the solvent extraction studies conformed to Eu(NO3)3 · 3T2EHDGA which is in variance with the analogous Eu(III) – TODGA (linear homolog of T2EHDGA) extraction system. The transport behavior of Eu(III) was investigated from a feed containing 3.0 M HNO3 into a receiver phase containing 0.01 M HNO3 across a PTFE flat sheet supported liquid membrane (SLM) containing 0.2 M T2EHDGA in n-dodecane as the carrier solvent and 30% iso-decanol as the phase modifier. Effects of feed acidity, carrier extractant concentration, membrane pore size, and Eu concentration in the feed on the transport rates of Eu(III) were also investigated. Membrane diffusion coefficient (D o) for the pertracted species was calculated using the Wilke-Chang equation as 4.25 × 10?6 cm2 · s?1. The influence of Eu concentration on the flux was also investigated. The role of temperature on the transport rates was investigated and the thermodynamic parameters were calculated.  相似文献   

19.
Liquid–liquid distribution behavior of nitric acid (HNO3) and water by a diglycolamide (DGA) ligand, N,N,N’,N’-tetra-2-ethylhexyldiglycolamide (T2EHDGA), into n-dodecane diluent was investigated. Spectroscopic Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) characterization of the organic extraction solutions indicate the T2EHDGA carbonyl coordinates with HNO3 and progressively aggregates at high acid conditions. Water extraction increases in the presence of HNO3. The experimentally observed distribution of HNO3 was modeled using the computer program SXLSQI. The results indicated that the formation of two organic-phase species—HNO3·T2EHDGA and (HNO3)2·T2EHDGA—satisfactorily describes the acid distribution behavior. Temperature-dependent solvent extraction studies allowed for the determination of thermodynamic extraction constants and ΔH and ΔS parameters for the corresponding extractive processes.  相似文献   

20.
The complexation and extraction of the adjacent minor actinides Am(III) and Cm(III) by both hydrophobic and hydrophilic pre-organized 2,9-bis(1,2,4-triazin-3-yl)-1,10-phenanthroline (BTPhen) ligands has been studied in detail. It has been shown that Am(III) is extracted more rapidly than Cm(III) by the hydrophobic CyMe4–BTPhen ligand into different organic diluents under nonequilibrium extraction conditions, leading to separation factors for Am over Cm (SFAm/Cm) as high as 7.9. Furthermore, the selectivity for Am(III) over Cm(III) can be tuned through careful choice of the extraction conditions (organic diluent, contact time, mixing speed, ligand concentration). This “kinetic” effect is attributed to the higher presumed kinetic lability of the Am(III) aqua complex toward ligand substitution. A dependence of the Am(III)/Cm(III) selectivity on the structure of the alkyl groups attached to the triazine rings is also observed, and BTPhens bearing linear alkyl groups are less able to discriminate between Am(III) and Cm(III) than CyMe4–BTPhen. Under equilibrium extraction conditions, hydrophilic tetrasulfonated BTPhen ligands complex selectively Am(III) over Cm(III) and prevent the extraction of Am(III) from nitric acid by the hydrophobic O-donor ligand N,N,N′,N′-tetraoctyldiglycolamide, giving separation factors for Cm(III) over Am(III) (SFCm/Am) of up to 4.6. These results further underline the utility of the BTPhen ligands for the challenging separation of the chemically similar minor actinides Am(III) and Cm(III).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号