首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hollow‐fiber ultrafiltration (UF) membranes were prepared from blends of poly(vinyl chloride) (PVC) and polystyrene (PS) with a dry/wet phase inversion method. Poly(ethylene glycol) (PEG) and N,N‐dimethylacetamide were used as the additive and solvent, respectively. The effects of the PEG concentration in the dope solution as an additive on the cross sections and inner and outer surface morphologies, permeability, and separation performance of the hollow fibers were examined. The mean pore size, pore size distribution, and mean roughness of both the inner and outer surfaces of the produced hollow fibers were determined by atomic force microscopy. Also, the mechanical properties of the hollow‐fiber membranes were investigated. UF experiments were conducted with aqueous solutions of poly(vinyl pyrrolidone) (PVP; K‐90, Mw = 360 kDa). From the results, we found that the PVC/PS hollow‐fiber membranes had two layers with a fingerlike structure. These two layers were changed from a wide and long to a thin and short morphology with increasing PEG concentration. A novel and until now undescribed shape of the nodules in the outer surfaces, which was denoted as a sea‐waves shape, was observed. The outer and inner pore sizes both increased with increasing PEG concentration. The water permeation flux of the hollow fibers increased from 104 to 367 L m?2 h?1 bar?1) at higher PEG concentrations. The PVP rejection reached the highest value at a PEG concentration of 4 wt %, whereas at higher values (from 4 to 9 wt %), the rejection decreased. The same trend was found also for the tensile stress at break, Young's modulus, and elongation at break of the hollow fibers. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 989‐1004, 2013  相似文献   

2.
Poly(vinyl chloride) (PVC) hollow‐fiber membranes were spun by a dry/wet phase‐inversion technique from dopes containing 15 wt % PVC to achieve membranes with different pore sizes for ultrafiltration (UF) applications. The effects of the N,N‐dimethylacetamide (DMAc) concentration in the internal coagulant on the structural morphology, separation performance, and mechanical properties of the produced PVC hollow fibers were investigated. The PVC membranes were characterized by scanning electron microscopy, average pore size, pore size distribution, void volume fraction measurements, and solubility parameter difference. Moreover, the UF experiments were conducted with pure water and aqueous solutions of poly(vinyl pyrrolidone) as feeds. The mechanical properties of the PVC hollow‐fiber membranes were discussed in terms of the tensile strength and Young's modulus. It was found that the PVC membrane morphology changed from thin, fingerlike macrovoids at the inner edge to fully spongelike structure with DMAc concentration in the internal coagulant. The effective pores showed a wide distribution, between 0.2 and 1.1 μm, for the membranes prepared with H2O as the internal coagulant and a narrow distribution, between 0.114 and 0.135 μm, with 50 wt % DMAc. The results illustrate that the difference in the membrane performances was dependent on the DMAc concentration. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
With the rapid development of membrane technology in water treatment, there is a growing demand for membrane products with high performance. The inorganic hollow fiber membranes are of great interest due to their high resistance to abrasion, chemical/thermal degradation, and higher surface area/volume ratio therefore they can be utilized in the fields of water treatment. In this study, the alumina (Al2O3) hollow fiber membranes were prepared by a combined phase-inversion and sintering method. The organic binder solution (dope) containing suspended Al2O3 powders was spun to a hollow fiber precursor, which was then sintered at elevated temperatures in order to obtain the Al2O3 hollow fiber membrane. The dope solution consisted of polyethersulfone (PES), Nmethyl-2-pyrrolidone (NMP) and polyvinylpyrrolidone (PVP), which were used as polymer binder, solvent and additive, respectively. The prepared Al2O3 hollow fiber membranes were characterized by a scanning electron microscope (SEM) and thermal gravimetric analysis (TG). The effects of the sintering temperature and Al2O3/PES ratios on the morphological structure, pure water flux, pore size and porosity of the membranes were also investigated extensively. The results showed that the pure water flux, maximum pore size and porosity of the prepared membranes decreased with the increase in Al2O3/PES ratios and sintering temperature. When the Al2O3/PES ratio reached 9, the pure water flux and maximum pore size were at 2547 L/m2·h and 1.4 μm, respectively. Under 1600dgC of sintering temperature, the pure water flux and maximum pore size reached 2398 L/(m2·h) and 2.3 μm, respectively. The results showed that the alumina hollow fiber membranes we prepared were suitable for the microfiltration process. The morphology investigation also revealed that the prepared Al2O3 hollow fiber membrane retained its’asymmetric structure even after the sintering process.  相似文献   

4.
In this work, different PVDF grades were used for producing hollow fibers for application in seawater desalination by membrane distillation (MD). In particular, PVDF Solef® homopolymers, with increasing molecular weight and different crystallinity, were used, also in blend, for preparing polymeric dopes. The effect of PVDF molecular weight on the dope viscosity was investigated. Then, a group of six polymeric dopes, having the same additive composition and the same viscosity (about 7000 mPa s), but containing different PVDF types was selected. Spinning experiments were carried out under the same conditions to highlight the effect of PVDF type on the produced hollow fibers’ morphology and properties. It was evidenced that polymer concentration plays a major role in determining the final membrane morphology; in particular, the formation of macrovoids is more affected by polymer concentration than dope viscosity. Fibers’ mechanical properties, porosity and pore size were found to be also strongly affected by polymer concentration. Finally, the produced hollow fibers were tested in a membrane distillation unit working under vacuum (VMD). Tests were carried out both feeding pure water and synthetic seawater. It was found that VMD performance, both in terms of flux (J) and solute separation factor (α), being connected to fibers’ morphology and porosity, is also clearly dependent on polymer concentration.  相似文献   

5.
Porous polyethersulfone hollow fiber membranes were fabricated via dry–wet phase inversion method with the polymer concentration in the spinning dope either 13 wt% or 15 wt%. The fabricated hollow fiber membranes were characterized by different test methods and the performance of membranes in contactor applications was tested by CO2 absorption. The mean pore size, effective surface porosity and membrane porosity decreased while the membrane density and Liquid Entry Pressure (LEPw) increased as polymer concentration increased. The CO2 absorption flux of the fabricated membranes was measured in two cases; i.e. when the absorbent, distilled water, was in the lumen side or in the shell side. The CO2 flux for the membrane, fabricated from 13 wt% PES solution, was compared with some commercial and in-house made membranes. The former membrane had 111% higher flux than a commercial PTFE membrane.  相似文献   

6.
An outer‐skin hollow‐fiber ultrafiltration (UF) membrane was spun from a new dope solution containing cellulose acetate (CA)/poly(vinyl pyrrolidone) (PVP 360K)/N‐methyl‐2‐pyrrolidone (NMP)/water using a wet‐spinning technique. The as‐spun fibers were posttreated with a hypochlorite solution over a range of concentrations for a fixed period of 24 h. The experimental results showed that the pure water flux of the treated membrane increased with increasing hypochlorite concentration. The treated membrane experienced an increased fouling tendency with increasing hypochlorite concentration because the hydrophilicity of the treated membrane decreased as a result of the removal of PVP contents in the membrane matrix after hypochlorite treatment. SEM images revealed that the membrane had an outer dense skin, a porous inner surface, and a spongelike structure, which confirmed that addition of PVP favored the suppression of macrovoids in the membrane. The membrane pore size could be significantly increased when the hypochlorite concentration reached 200 mg/L. It was concluded that hypochlorite treatment provided an additional option to easily alter the pore size of UF membranes. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 227–231, 2005  相似文献   

7.
The skin layer structure can be changed by adjusting the diffusion rate of the non-solvent into the polymer solution between membrane and coagulation bath through adding surfactant into either coagulation bath or dope solution. When adding SDS in coagulation bath, the variation trend of apparent diffusion coefficient during phase separation and scanning electron microscopy morphology of resultant membranes indicated that, at the beginning SDS migrated to the membrane-bath interface during phase separation process, playing a role as mechanical barrier within 0.15 wt% SDS concentration. Once the SDS concentration exceeds CMC, the remaining SDS will form micelles act as a carrier, hence, the phase separation rate accelerated. The membranes were characterized roughness parameters, obtained by the atomic force microscopic technique. While adding surfactant in the dope solution, compared with SDS addition into the coagulation bath, apparent diffusion coefficient and SEM morphology showed the similar trend, and the excellent range of SDS concentration is 0.08 wt%-0.1 wt%. As changing the nature of surfactant in the dope solution, we found that, with the increase of surfactant hydrophile-lipophile balance (HLB) value, the rate of phase separation speeds up, the size of macrovoid increases, flux increases gradually and rejection is weakened.  相似文献   

8.
Poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐co‐HFP) hollow fiber membranes were prepared by using the phase inversion method. The effect of polyethylene glycol (PEG‐600Mw) with different concentrations (i.e., 0, 5, 7, 10, 12, 15, 18, and 20 wt %) as a pore former on the preparation and characterization of PVDF‐co‐HFP hollow fibers was investigated. The hollow fiber membranes were characterized using scanning electron microscopy, atomic force microscopy, and porosity measurement. It was found that there is no significant effect of the PEG concentration on the dimensions of the hollow fibers, whereas the porosity of the hollow fibers increases with increase of PEG concentration. The cross‐sectional structure changed from a sponge‐like structure of the hollow fiber prepared from pure PVDF‐co‐HFP to a finger‐like structure with small sponge‐like layer in the middle of the cross section with increase of PEG concentration. A remarkable undescribed shape of the nodules with different sizes in the outer surfaces, which are denoted as “twisted rope nodules,” was observed. The mean surface roughness of the hollow fiber membranes decreased with an increase of PEG concentration in the polymer solution. The mean pore size of the hollow fibers gradually increased from 99.12 to 368.91 nm with increase of PEG concentration in polymer solution. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
Porous polyvinylidene fluoride-co-hexafluropropylene (PVDF-HFP) hollow fiber membranes were fabricated through a wet spinning process. In order to improve the membrane structure, composition of the polymer solution was adjusted by studying ternary phase diagrams of polymer/solvent/non-solvent. The prepared membranes were used for sweeping gas membrane distillation (SGMD) of 20 wt% ethylene glycol (EG) aqueous solution. The membranes were characterized by different tests such as N2 permeation, overall porosity, critical water entry pressure (CEPw), water contact angle and collapsing pressure. From FESEM examination, addition of 3 wt% glycerol in the PVDF-HFP solution, produced membranes with smaller finger-likes cavities, higher surface porosity and smaller pore sizes. Increasing the polymer concentration up to 21 wt% resulted in a dense spongy structure which could significantly reduce the N2 permeance. The membrane prepared by 3 wt% glycerol and 17 wt% polymer demonstrated an improved structure with mean pore size of 18 nm and a high surface porosity of 872 m−1. CEPw of 350 kPa and overall porosity of 84% were also obtained for the improved membrane. Collapsing pressure of the membranes relatively improved by increasing the polymer concentration. From the SGMD test, the developed membrane represented a maximum permeate flux of 28 kg·m−2·h−1 which is almost 19% higher than the flux of plain membrane. During 120 h of a long-term SGMD operation, a gradual flux reduction of 30% was noticed. In addition, EG rejection reduced from 100% to around 99.5% during 120 h of the operation.  相似文献   

10.
Polysulfone hollow fiber membranes were prepared via the dry-wet spinning process from dope solutions comprised of polysulfone, n-methyl-2-pyrrolidone, polyvinyl-2-pyrrolidone, and dodecylbenzene sulfonic acid, sodium salt. Morphology and performance of the membranes were affected by the compositions of coagulant and dope solution. Pore size and the water flux of the membrane increased by the addition of dodecylbenzene sulfonic acid, sodium salt to water in the coagulation bath, due to the changes of physicochemical properties of the outer coagulant. Addition of dodecylbenzene sulfonic acid, sodium salt to the dope solution also increased the pore size. The absence of polyvinyl-2-pyrrolidone, the pore forming agent, in the dope solution resulted in a remarkable decrease of pore size of the membrane. The distance between the spinneret and coagulation bath affected the membrane structure and performance. The membranes prepared in this study were suitable for hemofiltration in terms of molecular weight cut-off characteristics. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
Average pore sizes and effective porosity of microporous polysulfone hollow fibers were determined by the gas permeability method. Surface structure and porosity were determined by scanning electron microscopy. The values of effective porosity ε/q2 (porosity/tortuosity factor) are approximately one order of magnitude lower than those reported previously for flat sheet porous membrane. These lower values are a direct outcome of a higher polymer concentration in the spinning dope. Correlations between the wall void volume, equivalent pore size, and hydraulic permeabilities of the hollow fibers have been determined. Rather low values of ε/q2 have been calculated compared to those of the void volume; these effective porosity values indicate either a very high tortuosity factor or a large number of “dead end” pores. Exposure of the fibers to elevated temperature (110°C) for a short period of time drastically reduces the surface pore size and narrows the pore size distributions, whereas overall fiber dimensions are reduced only by 1%, and 85% of the fiber's hydraulic permeability is retained. The scanning electron microscopy study reveals the formation of a relatively dense skin in some spun fibers. For such “skinned” fibers, kinetic (permeability) evaluation of static structure such as mean pore size is not realistic and is further generalized to the term “equivalent pore size.”  相似文献   

12.
A systematic study of the air gap effects on both the internal and the external morphology, permeability and separation performance of polyvinylidene fluoride (PVDF) hollow fiber membranes has been carried out. The hollow fibers were prepared using the dry-jet wet spinning process using a dope solution containing PVDF/ethylene glycol/N, N-dimethylacetamide with a weight ratio of 23/4/73. Ethanol aqueous solution, 50% by volume, was used as internal and external coagulants. The inner and the outer surfaces of the prepared hollow fibers were analyzed by atomic force microscopy (AFM), while their cross-sectional structure was studied by scanning electron microscopy (SEM). Ultrafiltration experiments were conducted using non-ionic solutes of different molecular weights. The results show that both the pore sizes and nodule sizes have a log-normal distribution. The pore size, nodule size and roughness parameters of the inner and outer surfaces of the hollow fibers were affected by the air gap distance. Alignment of nodules to the spinning direction was observed. Experimental results indicate that an increase in air gap distance, from 1 to , results in a hollow fiber with a lower permeation flux and a higher solute separation performance due to the decrease of the pore size. AFM analysis reveals that the air gap introduces an elongational stress because of gravity on the internal or external surfaces of the PVDF hollow fibers. At low air gap distance, the inner surface controls the ultrafiltration performance of the PVDF hollow fiber membranes because of its lower pore size, while at high air gap lengths the inner pore size becomes larger than the outer pore size. The turning point was observed at an air gap distance of .  相似文献   

13.
Polyvinylchloride (PVC) membranes were modified by blending with polyacrylonitrile (PAN) as a second polymer. The miscibility of PVC/PAN blend was examined using an incompressible regular solution (CRS) model in no need to make a membrane. The results showed that the PVC/PAN blend was immiscible for all compositions at a temperature range of ?25 to 225 °C. Furthermore, the prediction of the phase behavior of a PVC/PAN/DMF ternary system showed that the blend of two polymers was highly incompatible even in their common DMF solvent. However, this incompatibility led to a remarkable increase in the porosity of the blend membrane and pure water flux compared to those for pure PVC membrane. The pure water flux of the PVC membrane (37.9 ± 1.5 L/m2 h) increased about 41 and 76% by adding 10 and 20 wt% PAN, respectively. The blend membranes also showed an enhanced flux recovery ratio (FRR) compared to a pure PVC membrane, although the PVC membrane rejection for Bovine serum albumin (BSA) was decreased after blending with PAN. The PVC/PAN (90/10) blend membrane was subjected to hydrolysis with NaOH alkaline solution at three different concentrations and contact times to further enhance its performance. The membrane, which was hydrolyzed with a 0.5 mol/L NaOH solution for 0.5 h, showed a highest pure water flux of 75.6 ± 7.2 L/m2 h due to its increased hydrophilicity. This membrane also revealed an improved FRR and better thermal and mechanical properties compared to an unmodified membrane.  相似文献   

14.
Porous polyvinylidene fluoride-co-hexafluropropylene (PVDF-HFP) hollow fiber membranes were fabricated through a wet spinning process. In order to improve the membrane structure, composition of the polymer solution was adjusted by studying ternary phase diagrams of polymer/solvent/non-solvent. The prepared membranes were used for sweeping gas membrane distillation (SGMD) of 20 wt% ethylene glycol (EG) aqueous solution. The membranes were characterized by different tests such as N2 permeation, overall porosity, critical water entry pressure (CEPw), water contact angle and collapsing pressure. From FESEM examination, addition of 3 wt% glycerol in the PVDF-HFP solution, produced membranes with smaller finger-likes cavities, higher surface porosity and smaller pore sizes. Increasing the polymer concentration up to 21 wt% resulted in a dense spongy structure which could significantly reduce the N2 permeance. The membrane prepared by 3 wt% glycerol and 17 wt% polymer demonstrated an improved structure with mean pore size of 18 nm and a high surface porosity of 872 m-1. CEPw of 350 kPa and overall porosity of 84% were also obtained for the improved membrane. Collapsing pressure of the membranes relatively improved by increasing the polymer concentration. From the SGMD test, the developed membrane represented a maximum permeate flux of 28 kg·m-2·h-1 which is almost 19% higher than the flux of plain membrane. During 120 h of a long-term SGMD operation, a gradual flux reduction of 30% was noticed. In addition, EG rejection reduced from 100% to around 99.5% during 120 h of the operation.  相似文献   

15.
Carboxylated multiwalled carbon nanotubes (MWCNTs) were added to polyethersulfone hollow fiber membranes to improve their H2/CH4 separation properties. The addition of MWCNTs up to 1 wt% increased macrovoids formation in cross-section, while in 2 wt% loading, decreased due to increase in dope viscosity. The best gas separation performance for the mixed-matrix hollow fiber membranes was achieved at 1 wt% MWCNTs loading with hydrogen permeance of 69 GPU and H2/CH4 selectivity of 44.1 at 5 bar(g). Tensile test results showed that incorporation of MWCNTs into the polymeric matrix affected the mechanical properties of the fabricated membranes.  相似文献   

16.
Polyethersulfone (PES) is one of the most common polymers used to manufacture membranes. This work focuses on introducing and developing a novel polymer-based membrane applicable in the bio-artificial pancreas. The novel membrane based on the mixture of PES and Pyrolytic carbon (PyC) was studied and compared to PES as a reference. The PES/PyC blend membranes were characterized by top surface SEM, cross section SEM, AFM, contact angle pure water flux, insulin rejection, rejection of immune cells and molecules, and insulin diffusivity performance. In addition, the porosity of the membranes, mean pore size and mean pore density were also measured. The AFM and SEM images indicate that addition of synthesized PyC in the casting solution results in a membrane with high surface and sub-layer porosity and the addition 0.1 wt.% PyC to the casting solution reduced the surface roughness from 22.4 nm to 4.8 nm. The contact angle measurements reveal that the hydrophobicity of pure PES membrane enhanced with increasing the PyC concentration in the casting solution. With the increase of PyC from 0.0 wt.% to 0.1 wt.% in the casting solution, pure water flux reduces from 184 to 153 (L/m2h), insulin rejection reduces from 12 to 9.3%, rejection of immune cells and molecules reduce from 91.8 to 83% and insulin diffusivity increased from1.22E-8 to 1.46E-8. Furthermore, the resulting numbers for the mean pore size, mean pore density, and porosity of the PES-PyC(0.1 wt.%) membrane indicate a considerable improvement compared to pure PES membrane with increasing from 5.5 nm to 7 nm, 26 to 43 pores/area (area stand for the size of membrane surface in which pores were counted), and 68.3% to 84.6%, respectively. At the end, the statistical analysis was performed.  相似文献   

17.
In this study, an air gap spinning method was adopted to develop polyvinyl butyral (PVB)-zirconium (Zr) hybrid hollow fibers. With zirconium alkoxide, three kinds of PVB with different degree of acetalization were used as organic polymers. The morphologies, surface Zr content and relative bonding inside the hollow fibers were characterized by changing coagulation solution concentration, spinning dope viscosity and air gap distance. The effect of Zr on PVB structure were examined in terms of x-ray photoelectron spectroscopy, scanning electron microscopy, thermogravimetric analysis and Fourier transform infrared spectroscopy. Results indicate that PVB spinning solution experienced good mixing mechanism at room temperature and immediately develop structural hollow fiber when extruded into coagulation fluid of Zr alkoxide by 2.0 cm air gap distance. Among other prepared fibers, fiber contained 20 wt% PVB with 2 cm air gap confirms effective average diameter of about 1016 μm which strongly influenced by spinning solution viscosity. The variation of maximum Zr content (8.18%–14.36%) confirms the asymmetry of coordinate bonding occurred on internal and external surface. Moreover, changing of spinning solution viscosity, coagulation liquid concentration and air gap can only affect the surface roughness and fiber diameter whereas no micro pores were developed in the fiber sublayers.  相似文献   

18.
The simultaneous effects of non-solvent concentration in the spinning dope, jet-stretching and hot-drawing on porosity, morphology development and mechanical properties of wet-spun poly(acrylonitrile) fibers were studied. Addition of non-solvent to the spinning dope increased dope viscosity, the entanglement density of the polymeric solution and the number of entanglements per chain. Drawability of the as-spun fiber depended on the number of entanglements per polymer chain. Therefore, addition of non-solvent improved or spoiled drawability of the wet-spun fibers based on the concentration of the initial spinning dope. Hot-drawing and jet-stretching did not affect the fraction of nanovoids but shifted their size distribution towards smaller values. However, hot-drawing was more effective in reducing the overall porosity of the fibers in comparison with jet-stretching. Fiber tenacity increased when overall porosity decreased. Finally, strength-diameter correlation showed good agreement with the Griffith’s theory.  相似文献   

19.
Historically, polyaniline (PANI) had been considered an intractable material, but it can be dissolved in some solvents. Therefore, it could be processed into films or fibers. A process of preparing a blend of conductive fibers of PANI/poly‐ω‐aminoundecanoyle (PA11) is described in this paper. PANI in the emeraldine base was blended with PA11 in concentrated sulfuric acid (c‐H2SO4) to form a spinning dope solution. This solution was used to spin conductive PANI / PA11 fibers by wet‐spinning technology. As‐spun fibers were obtained by spinning the dopes into coagulation bath water or diluted acid and drawn fibers were obtained by drawing the as‐spun fibers in warm drawing bath water. A scanning electron microscope was employed to study the effect of the acid concentration in the coagulation bath on the microstructure of as‐spun fibers. The results showed that the coagulating rate of as‐spun fibers was reduced and the size of pore shrank with an increase in the acid concentration in the coagulation bath. The weight fraction of PANI in the dope solution also had an influence on the microstructure of as‐spun fibers. The microstructure of as‐spun fibers had an influence on the drawing process and on the mechanical properties of the drawn fibers. Meanwhile, the electrically conductive property of the drawn fibers with different percentage of PANI was measured. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1458–1464, 2002  相似文献   

20.
以BTDA-TDI/MDI(P84)三元共聚聚酰亚胺(PI)粉末为原料,采用湿法纺丝技术制备BTDA-TDI/MDI三元共聚PI初生纤维,并对其结构和性能进行表征。实验结果表明:三元共聚PI初生纤维的最高抗断裂强度为0.65 cN/dtex;纺丝浆液PI质量分数19%时所得初生纤维表面较光滑;凝固浴溶液NMP质量分数70%时初生纤维结晶度分别比质量分数60%和80%时结晶度大;不同NMP质量分数凝固浴溶液所得初生纤维的热稳定性相差不大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号