首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《分离科学与技术》2012,47(3):507-517
The adsorption characteristics of Pb2+ on pre-boiled treated onion skins (PTOS) and formaldehyde-treated onion skins (FTOS) were evaluated. The effects of Pb2+ initial concentration, agitation rate, solution pH, and temperature on Pb2+ adsorption were investigated in batch systems. Pb2+ adsorption was found to increase with increase in initial concentration. The point of zero net charge (PZC) was 6.53. The optimum pH for the maximum removal of Pb2+ was 6.0. The adsorption equilibrium data was best represented by the Langmuir isotherm model for FTOS and the Freundlich isotherm model for PTOS. The maximum amounts of Pb2+ adsorbed (qm), as evaluated by the Langmuir isotherm, was 200 mgg?1 for FTOS. The efficiencies of PTOS and FTOS for Pb2+ removal were 84,8.0% and 93.5% at 0.15 g/200 mL?1 adsorbent dose, respectively. (C 0 = 50 mg L?1). Study concluded that onion skins, a waste material, have good potential as an adsorbent to remove toxic metals like Pb2+ from water. Boehm titration analysis was conducted to determine the surface groups. It was found that the adsorption kinetics of Pb2+ obeyed pseudo-first-order kinetic model as based on Δq (%) values. FTIR and SEM images before and after adsorption was recorded to explore changes in adsorbent-surface morphology. Activation energy (Ea) was obtained as 25.596 kJ/mol.  相似文献   

2.
A novel poly(crystal violet)/graphene-modified glassy carbon electrode (PCV/Gr/GCE) was fabricated for the simultaneous determination of Pb2+ and Cd2+. The electrochemical behavior of both species at the PCV/Gr/GCE was investigated employing cyclic voltammetry. In acetate buffer, the modified electrode showed an excellent electrocatalytical effect on the oxidation of both species and was further used for their determination. Under optimized analytical conditions, the oxidation peak currents of Pb2+ and Cd2+ obtained by differential pulse voltammetry in pH 4.6 acetate buffer showed a linear relationship with their concentrations in the ranges of 2.00 × 10?8–1.95 × 10?5 mol L?1 and 4.00 × 10?8–5.58 × 10?5 mol L?1, respectively. The developed method has excellent sensitivity, selectivity, reproducibility and has been successfully applied to the determination of Pb2+ and Cd2+ in water samples.  相似文献   

3.
Reusability and selective adsorption toward Pb2+ with the coexistence of Cd2+, Co2+, Cu2+ and Ni2+ ions on chitosan/P(2-acrylamido-2-methyl-1-propanesulfonic acid-co-acrylic acid) [CS/P(AMPS-co-AA)] hydrogel, a multi-functionalized adsorbent containing –NH2, –OH, –COOH and –SO3H groups was studied. The CS/P(AMPS-co-AA) was prepared in aqueous solution by a simple one-step procedure using glow discharge electrolysis plasma technique. The reusability of adsorbent in HNO3, EDTA-2Na and EDTA-4Na was investigated in detail. The competitive adsorption of the metal ions at the initial stage was compared between their equal mass concentration and equal molar concentration. In addition, the adsorption mechanism of the adsorbent for adsorption of Pb2+ was also analyzed by XPS. The results showed that the optimum pH of adsorption was 4.8, and time of adsorption equilibrium was about 180 min. Adsorption kinetics fitted well in the pseudo second-order model. The equilibrium adsorption capacities of Pb2+, Cd2+, Co2+, Cu2+, and Ni2+ at pH 4.8 were obtained as 673.3, 358.3, 176.7, 235.0 and 171.7 mg g?1, in their given order. The adsorbent displayed an excellent reusability using 0.015 mol L?1 EDTA-4Na solution as the eluent, and the desorption ratio could not correctly reflect the true characteristics of adsorption/desorption process. Moreover, the adsorbent showed good adsorption selectivity for Pb2+. The molar adsorption capacity at the initial stage with equal molar concentration was more reliable than the mass adsorption capacity during the study of selective adsorption. According to the XPS results, the adsorption of Pb2+ ions by the CS/P(AMPS-co-AA) absorbent could be attributed to the coordination between N atom and Pb2+ and ion-exchange between Na+ and Pb2+.  相似文献   

4.
In this study, the preparation and characterization of the novel pH-sensitive poly(acrylamide-co-2-methacryloyloxy)ethyltrimethyl ammonium chloride)/montmorillonite (p(AAm-co-METAC)/MMT) composite superabsorbent hydrogels and their selective metal absorbtion properties were investigated. The adsorption of metal ions is highly dependent on the initial feed concentration, contact time, pH of the metal solution and adsorbent doses. The results were analyzed both by the Langmuir and Freundlich isotherms and the adsorption is found to follow pseudo-second-order kinetics. The adsorption capacity followed the order Zn2+ > Ni2+ > Cu2+ > Pb2+ and the maximum adsorption capacities of them were ~320, 285, 240 and 120 (mg g?1), respectively.  相似文献   

5.
《分离科学与技术》2012,47(8):2117-2143
Abstract

The aim of this work is to study the effectiveness of regional, low-cost natural clinoptilolitic zeolite tuff in heavy metal ions removal from aqueous solution, through comparative study with commercial granulated activated carbon. The equilibrium of adsorption of Cd2+, Pb2+, and Zn2+ on both adsorbents have been determined at 25, 35, and 45°C in batch mode. The granulated activated carbon has shown around three times higher adsorption capacity for Cd2+ and Zn2+ than natural zeolite, and almost the same adsorption capacity for Pb2+ as the natural zeolite. The metal ion selectivity series Pb2+ > Cd2+ > Zn2+, on a mass basis, has been obtained on both adsorbents. The Langmuir and Freundlich model have been used to describe the adsorption equilibrium. The thermodynamic parameters were calculated from the adsorption isotherm data obtained at different temperatures. The study of the influence of the acidity of the metal ion aqueous solution has shown an increase of metal ion uptake with increase of the pH. The sorption mechanism of Cd2+, Pb2+, and Zn2+ on natural zeolite changes from ion-exchange to ion-exchange and adsorption of metal-hydroxide with increase of the pH from 2 to 6 (and 7 for Zn2+). The preliminary cost calculation, based on adsorbents maximum adsorption capacity and their price, have revealed the potential of natural zeolite as an economic alternative to the granulated activated carbon in the treatment of heavy metal polluted wastewater.  相似文献   

6.
《分离科学与技术》2012,47(3):591-609
Abstract

The aniline moiety was covalently grafted onto silica gel surface. The modified silica gel with aniline groups (SiAn) was used for removal of Cu(II), Fe(III), and Cr(III) ions from aqueous solution and industrial effluents using a batch adsorption procedure. The maximum adsorption of the transition metal ions took place at pH 4.5. The adsorption kinetics for all the adsorbates fitted better the pseudo second‐order kinetic model, obtaining the following adsorption rate constants (k2): 1.233 · 10?2, 1.902 · 10?2, and 8.320 · 10?3 g · mg?1 min?1 for Cr(III), Cu(II), and Fe(III), respectively. The adsorption of these transition metal ions were fitted to Langmuir, Freundlich, Sips, and Redlich‐Peterson isotherm models; however, the best isotherm model fitting which presented a lower difference of the q (amount adsorbed per gram of adsorbent) calculated by the model from the experimentally measured, was achieved by using the Sips model for all adsorbates chosen. The SiAn adsorbent was also employed for the removal of the transition metal ions Cr(III) (95%), Cu(II) (95%), and Fe(III) (94%) from industrial effluents, using the batch adsorption procedure.  相似文献   

7.
《分离科学与技术》2012,47(8):1793-1807
Abstract

In the present work, a study of the kinetics of adsorption of Cs+, Co2+, and Sr2+ on four hydrous titanium oxides, prepared in different media, and designated as Ti‐I, Ti‐II, Ti‐III, and Ti‐IV, was carried out. In the aqueous medium, the internal diffusion coefficients, Di for Cs+ were found to be equal to 3.7×10?9, 3.7×10?9, 2.3×10?9, and 1.5?10?9 cm2/s, in Ti‐I, Ti‐II, Ti‐III, and Ti‐IV, respectively. For Co2+ and Sr2+, these values are equal to 0.96×10?9 and 0.64×10?9 cm2/s, respectively for Ti‐IV. In Ti‐IV, Di for all ions generally increases on adding methanol or propanol. This is probably due to greater dehydration, leading to faster ion diffusion, and, hence, to a decrease of ion mobility due to stronger interaction with the surface. In all media in Ti‐IV, the order: Di(Cs+)>Di(Co2+)≥Di(Sr2+) was found which is due to a stronger interaction of the bivalent ions with the exchange sites.  相似文献   

8.
ABSTRACT

In this study, Zn(II) ion-imprinted polymer was prepared on the surface of vinyl silica particles and applied for detection of Zn(II) ions using differential pulse voltametry. The ion- imprinted polymer particles were prepared by free radical polymerization. The prepared particles were characterized by different morphological and elemental techniques. The ion-imprinted particles were used to fabricate the carbon paste electrode as a zinc ions sensor. The modified zinc sensor showed linear response in the concentration range 6.12 × 10?9 to 4.59 × 10?8 mol L?1. The limit of detection and limit of quantification of the electrode were 1.351 × 10?8 and 4.094 × 10?8 mol L?1, respectively.  相似文献   

9.
《分离科学与技术》2012,47(2):222-233
ABSTRACT

In the present work, for the first time, a new carboxylate-functionalized walnut shell (CFWS) was prepared via esterification of walnut shell (WS) with isopropylidene malonate. The characterization of the CFWS by different techniques approved that carboxylic groups were introduced onto the surface of WS. The performance of the modified adsorbent was studied for the removal of Pb2+ ions from aqueous solutions in a batch adsorption system. The analysis data showed that the Langmuir isotherm could satisfactorily explain the equilibrium data, and the maximum adsorption capacity for Pb2+ ions was found to be 192.3 mg g?1 at 0.8 g L?1 of the adsorbent, pH 5.5, and a temprature of 298 K. Two models, namely artificial neural network (ANN) and multiple linear regression (MLR), were used to construct an empirical model for prediction of the removal percentage of Pb2+ ions under different experimental conditions. These models were validated using a test set of 20 data. A comparison between the developed models shows that the ANN model is able to predict the removal percentage of Pb2+ ions more accurately. Consequently, the ANN model could be applied for the design of an automated wastewater remediation plan. Also it has to be noted that the used CFWS was recovered using EDTA-2Na, and employed for the removal of Pb2+ ions from aqueous solutions.  相似文献   

10.
A series of gel resins were prepared by polymerizing glycidyl methacrylate (GMA) and 2‐acrylamido‐2‐methylpropane sulfonic acid (AMPS) and functionalizing with ammonia (NH3) and tetraethylenepentamine (TEPA). The aminated gel resins were then used as an adsorbent for the removal of heavy metal ions (Cu2+ and Pb2+). These gel resins containing amino groups and chelating amino groups had excellent adsorptive properties for Cu2+ and Pb2+. The adsorption process reached equilibrium in 40 min, and the adsorption capacities of Cu2+ and Pb2+ were 75.0 mg g?1 and 266.6 mg g?1 for the NH3‐aminated gel resins and 57.5 mg g?1 and 330.6 mg g?1 for the TEPA‐aminated gel resins, respectively. After five adsorption–desorption processes, the adsorption capacities only decreased slightly. Thus, these aminated gel resins can be used as effective adsorbents for aqueous heavy metal ions (Cu2+ and Pb2+). © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44466.  相似文献   

11.
Heavy metal ions such as Cu2+ and Pb2+ impose a significant risk to the environment and human health due to their high toxicity and non‐degradable characteristics. Herein, Al(OH)3‐polyacrylamide chemically modified with dithiocarbamates (Al‐PAM‐DTCs) was synthesized using formaldehyde, diethylenetriamine, carbon disulfide, and sodium hydroxide for rapid and efficient removal of Cu2+ and Pb2+. The synthesized adsorbent was characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis, scanning electron microscopy–energy dispersive X‐ray spectroscopy analysis, and transmission electron microscope measurements. Al‐PAM‐DTCs showed rapid removal of Cu2+ (<30 min) and Pb2+ (<15 min) with high adsorption capacities of 416.959 mg/g and 892.505 mg/g for Cu2+ and Pb2+ respectively. Al‐PAM‐DTCs also had high capacities in removing suspended solids and metal ions simultaneously in turbid bauxite suspensions. FTIR, thermodynamic study, and elemental mapping were used to determine the adsorption mechanism. The rapid, convenient, and effective adsorption of Cu2+ and Pb2+ indicated that Al‐PAM‐DTCs has great potential for practical applications in purification of other heavy metal ions from aquatic systems. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45431.  相似文献   

12.
《分离科学与技术》2012,47(2):277-287
Competitive adsorption of Ag+, Pb2+, Ni2+, and Cd2 ions on vermiuculite in a binary, ternary, and quaternary mixture was investigated in batch experiments. The effects of the presence of Ag+, Ni2+, and Cd2+ ions on the adsorption of Pb2+ ions were investigated in terms of the equilibrium isotherm. Experimental results indicated that Pb2+ ions always favorably adsorbed on vermiculite over Ag+, Ni2+, and Cd2+ ions. The adsorption equilibrium data of Pb2+ ions better fitted the Langmuir model than the Freundlich model. The results showed that the pseudo-second-order kinetics model was in good agreement with the experimental results for all metal ions, and the adsorption rate among the metal ions followed Ag+ > Pb2+ > Ni2+ > Cd2+. The desorption and regenration study indicated that vermiculite can be used repeatedly and be suitable for the design of a continuous process.  相似文献   

13.
《分离科学与技术》2012,47(2):376-388
Abstract

Melamine‐formaldehyde‐thiourea (MFT) chelating resin were prepared using melamine (2,4,6‐triamino‐1,3,5‐triazine), formaldehyde, and thiourea and this resin has been used for separation and recovery of silver(I) ions from copper(II) and zinc(II) base metals and calcium(II) alkaline‐earth metal in aqueous solution. The MFT chelating resin was characterized by elemental analysis and FT‐IR spectra. The effect of pH, adsorption capacity, and equilibrium time by batch method and adsorption, elution, flow rate, column capacity, and recovery by column method were studied. The maximum uptake values of MFT resin were found as 60.05 mg Ag+/g by batch method and 11.08 mg Ag+/g, 0.052 mg Zn2+/g, 0.083 mg Cu2+/g and 0.020 mg Ca2+/g by column method. It was seen that MFT resin showed higher uptake behavior for silver(I) ions than base and earth metals due to chelation.  相似文献   

14.
This article describes a versatile application of 25,27-bis-N-(N,N-diethyl-2-aminoethyl)carbonylmethoxy-26,28-dihydroxycalix[4]arene (4) as an ionophore for the preparation of perchlorate ion-selective electrode. The electrode exhibits a Nernstian response over the perchlorate concentration range of 1.0×10?9 – 1.0×10?1 M with a slope of 59.24 ± 0.5 mV per decade of the concentration. The limit of detection as determined from the intersection of the extrapolated linear segments of the calibration plot is 3.04×10?9 M. The electrode shows good selectivity toward perchlorate with respect to many common anions. The response time of the sensor was 5–10 s and it has maximum life time of 2 months in the acidic pH. The electrode was used to determine perchlorate in real water samples. The interaction of the ionophore with perchlorate ions is also demonstrated by UV–vis spectroscopy.  相似文献   

15.
Amidoximated chitosan‐g‐poly(acrylonitrile) (PAN) copolymer was prepared by a reaction between hydroxylamine and cyano group in chitosan‐g‐PAN copolymer prepared by grafting PAN onto crosslinked chitosan with epychlorohydrine. The adsorption and desorption capacities for heavy metal ions were measured under various conditions. The adsorption capacity of amidoximated chitosan‐g‐PAN copolymer increased with increasing pH values, and was increased for Cu2+ and Pb2+ but a little decreased for Zn2+ and Cd2+ with increasing PAN grafting percentage in amidoximated chitosan‐g‐PAN copolymer. In addition, desorption capacity for all metal ions was increased with increasing pH values in contrast to the adsorption results. Stability constants of amidoximated chitosan‐g‐PAN copolymer were higher for Cu2+ and Pb2+ but lower for Zn2+ and Cd2+ than those of crosslinked chitosan. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 469–476, 1999  相似文献   

16.
Cross‐linked chitosans synthesized by the inverse emulsion cross‐link method were used to investigate adsorption of three metal ions [Cd(II), Pb(II), and Ag(I)] in an aqueous solution. The chitosan microsphere, was characterized by FTIR and SEM, and adsorption of Cd(II), Pb(II), and Ag(I) ions onto a cross‐linked chitosan was examined through analysis of pH, agitation time, temperature, and initial concentration of the metal. The order of adsorption capacity for the three metal ions was Cd2+ > Pb2+ > Ag+. This method showed that adsorption of the three metal ions in an aqueous solution followed the monolayer coverage of the adsorbents through physical adsorption phenomena and coordination because the amino (? NH2) and/or hydroxy (? OH) groups on chitosan chains serve as coordination sites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
Four new ion-selective electrodes (ISEs), based on N,N′-bis(salicylaldehyde)-p-phenylene diamine (SPD) as ionophore, are constructed for the determination of copper(II) ion. The modified carbon paste (MCPEs; electrodes I and II) and modified screen-printed sensors (MSPEs; electrodes III and IV) exhibit good potentiometric response for Cu(II) over a wide concentration range of 1.0 × 10?6 – 1.0 × 10?2 mol L?1 for electrodes (I and II) and 4.8 × 10?7–1.0 × 10?2 mol L?1 for electrodes (III and IV) with a detection limit of 1.0 × 10?6 mol L?1 for electrodes (I and II) and 4.8 × 10?7 mol L?1 for electrodes (III and IV), respectively. The slopes of the calibration graphs are 29.62 ± 0.9 and 30.12 ± 0.7 mV decade?1 for electrode (I) (tricresylphosphate (TCP) plasticizer) and electrode (II) (o-nitrophenyloctylether o-NPOE plasticizer), respectively. Also, the MSPEs showed good potentiometric slopes of 29.91 ± 0.5 and 30.70 ± 0.3 mV decade?1 for electrode (III) (TCP plasticizer) and electrode (IV) (o-NPOE plasticizer), respectively. The electrodes showed stable and reproducible potentials over a period of 60, 88, 120, and 145 days at the pH range from 3 to 7 for electrodes (II), (III), and (IV) and pH range from 3 to 6 for electrode (I). This method was successfully applied for potentiometric determination of Cu(II) in tap water, river, and formation water samples in addition to pharmaceutical preparation. The results obtained agree with those obtained with the atomic absorption spectrometry (AAS).  相似文献   

18.
《分离科学与技术》2012,47(3):597-608
Abstract

The Zr(IV) and Hf(IV) biosorption characteristics of rice bran, wheat bran and Platanus orientalis tree leaves were examined as a function of initial pH, contact time, temperature, and initial metal ions concentration. Adsorption equilibriums were achieved in about 1, 5 and 40 min for rice bran, wheat bran, and leaves respectively. The biosorption behavior of leaves was significantly affected by solution pH whereas rice bran and wheat bran adsorption efficiencies were slightly affected by solution pH. The Freundlich and Langmuir adsorption equations, which are commonly used to describe sorption equilibrium for metals removal by biomasses, were use to represent the experimental and equilibrium data fitted well to the Langmuir isotherm model. The negative Gibbs free energy values obtained in this study with rice bran wheat bran and Platanus orientalis tree leaves confirmed the feasibility of the process and the spontaneous nature of sorption. In the optimum conditions, the adsorption efficiencies of other metal ions such as Fe3+, Cu2+, Pb2+, Hg2+, La3+, Ce3+ were significantly lower than Zr(IV) and Hf(IV) ions and these biomasses are excellent sorbents for the selective uptake of proposed ions from acidic aqueous solutions.  相似文献   

19.
《分离科学与技术》2012,47(4):923-943
Abstract

The sorption behavior of 2.7×10?5 M solution of Th(IV) ions on 1‐(2‐pyridylazo)‐2‐naphthol (PAN) loaded polyurethane foam (PUF) has been investigated. The quantitative sorption was occurred from pH 6 to 9 from acetate buffer solutions. The sorption conditions were optimized with respect to pH, shaking time, and weight of sorbent. The sorption data followed the Freundlich, Langmuir, and Dubinin‐Radushkevich (D‐R) isotherms very successfully at low metal ions concentration. The Freundlich isotherm constant (1/n) is estimated to be 0.22±0.01, and reflects the surface heterogeneity of the sorbent. The Langmuir isotherm gives the maximum monolayer coverage is to be 8.61×10?6 mol g?1. The sorption free energy of the D‐R isotherm was 17.85±0.33 kJ mol?1, suggesting chemisorption involving chemical bonding was responsible for the adsorption process. The numerical values of thermodynamic parameters such as enthalpy (ΔH), entropy (ΔS), and Gibbs free energy (ΔG) indicate that sorption is endothermic, entropy driven, and spontaneous in nature. The adsorption free energy (ΔGads) and effective free energy (ΔGeff) are also evaluated and discussed. The effect of different anions on the sorption of Th(IV) ions onto PAN loaded PUF was studied. The possible sorption mechanism on the basis of experimental finding was discussed. A new separation procedure of Th(IV) from synthetic rare earth mixture using batch, column chromatography, and squeezing techniques were reported.  相似文献   

20.
《Fuel》2007,86(5-6):853-857
The removal characteristics of lead and copper ions from aqueous solution by fly ash were investigated under various conditions of contact time, pH and temperature. The influence of pH of the metal ion solutions on the uptake levels of the metal ions by fly ash were carried out between pH 4 and 12. The level of uptake of Pb2+ and Cu2+ ions by the fly ash generally increased, but not in a progressive manner, at higher pH values. The effect of temperature on the uptake of Pb2+ and Cu2+ ions was investigated between 30 °C and 60 °C, the adsorption of being enhanced at the lowest temperature. Rate constants were evaluated in terms of a first-order kinetics. The rate constant, k for uptake of Pb2+ and Cu2+ ions were 1.77 × 10−2 s−1 and 2.11 × 10−2 s−1, respectively. The experimental results underline the potential of coal fly ash for the recovery of metal ions from waste water. The main mechanisms involved in the removal of heavy metal ions from solution were adsorption at the surface of the fly ash and precipitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号