首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《分离科学与技术》2012,47(14):2291-2297
The present work deals with the use of Caesalpinia bonducella seed powder (CBSP) as a biosorbent for Ni(II) removal from aqueous solution. The nature and morphology of the sorbent were determined using FTIR spectral, SEM, and EDX analysis. The biosorption characteristics of Ni(II) onto CBSP was investigated as a function of pH, biosorbent dosage, contact time, initial metal ion concentration, and temperature. Langmuir and Freundlich isotherms were used to fit the experimental data. The best interpretation for the equilibrium data was given by the Langmuir isotherm. The maximum biosorption capacity was found to be 188.7 mg/g for Ni(II) at pH 5.0 and at 323 K. The equilibrium biosorption data were well fitted with the pseudo-second-order kinetic equation. The values of thermodynamic parameters (ΔGo, ΔHo, and ΔSo) indicated that the biosorption of Ni(II) onto CBSP was feasible, spontaneous and exothermic in nature. The FTIR results revealed that hydroxyl, amine, carboxyl, and carbonyl functional groups are responsible for Ni(II) biosorption onto CBSP.  相似文献   

2.
The biosorption characteristics of copper(II) ions using Posidonia oceanica biomass were investigated. Experimental parameters affecting the biosorption process such as pH level, contact time, biosorbent dosage and temperature were studied. The equilibrium data were applied to the Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models. The Langmuir model fitted very well the equilibrium data, and the maximum uptake of Cu(II) by Posidonia oceanica was found to be 76.92 mg/g. The mean free energy E (10.78 kJ/mol) from the D-R isotherm indicated a chemical ion-exchange mechanism. Kinetic results showed that the pseudo-second-order kinetic model was well fitted to the experimental data. Thermodynamic parameters depicted the exothermic nature of biosorption and the process was feasible and spontaneous. The results of FTIR (Fourier-transform infrared spectroscopy) revealed that carboxyl, amine, and hydroxyl groups on the biomass surface were involved in the biosorption of Cu(II) ions.  相似文献   

3.
In this study, the feasibility of using modified plantain peel to remove 2,6-dichlorophenol from iaqueous solutions was investigated under batch mode. The effects of physical factors such as initial 2,6-dichlorophenol concentration, contact time, biosorbent particle size, biosorbent dosage and temperature on the removal process were evaluated. The results showed that biosorption of 2,6-dichlorophenol was dependent on these factors. The equilibrium biosorption data were analyzed by the Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich (D-R) adsorption isotherm models. The four tested isotherm models provided good fits to the experimental data obtained at 30°C; however, the Freundlich isotherm model provided the best correlation (R2 = 0.9874) of the experimental data. The maximum monolayer biosorption capacity (Q max ) was found to be 14.25 mg/g. The biosorption kinetics data of 2,6-dichlorophenol were analyzed by pseudo-first-order, pseudo-second-order, Elovich, intraparticle diffusion, and liquid film diffusion models. The five kinetic models fitted well to the biosorption kinetic data; however, the pseudo-second-order kinetic model gave the best fit when the biosorption mechanism was controlled by film diffusion. Thermodynamic quantities such as standard Gibbs free energy (ΔG°), standard enthalpy (ΔH°), standard entropy change of biosorption (ΔS°), and activation energy (Ea) were evaluated, and it was found that the biosorption process was spontaneous, feasible, endothermic in nature and of dual nature, physisorption and chemisorption; however, the physisorption process was dominant. Therefore, modified plantain peel has potential for application as an effective bioadsorbent for removal of 2,6-dichlorophenol from aqueous solution.  相似文献   

4.
The potential use of a biosorbent, Cystoseira indica, obtained from the Persian Gulf was investigated for the removal of Th (IV) ions from aqueous solutions by considering equilibrium, kinetic and thermodynamic aspects. The FT-IR spectra of unloaded and Th-loaded biomass indicated various functionalities on the biomass surface including hydroxyl, amide and carboxyl groups, which are responsible for the binding of thorium ions. Th (IV) uptake by C. indica was pH dependent. An increase in biosorbent dosage up to 1 g/L caused an increase in the Th (IV) percentage removal. Biosorption process at all studied initial Th (IV) ion concentrations follows the pseudo-second order kinetic model. The biosorption data could be well described by Redlich-Peterson isotherm in comparison to Langmuir and Freundlich isotherms. The maximum sorption capacity of Th (IV) by Langmuir isotherm was estimated to be 169.49 mg/g at 45 °C with pH of 3. The thermodynamic parameters indicated the biosorption of Th on the biomass was a feasible, spontaneous and endothermic process. Th sorption capacity remained unaffected or slightly affected (<10% inhibition) in the presence of several interfering ions such as uranium (VI), nickel (II) and copper (II). The reusability of the biomass was also determined after five sorption-desorption cycles.  相似文献   

5.
《分离科学与技术》2012,47(15):2293-2301
The capacity of Ganoderma lucidum biomass for biosorption of selenium (IV) ions from aqueous solution was studied in a batch mode. In this study the effects of operating parameters such as solution pH, adsorbent dosage, initial metal concentration, contact time, and temperature were investigated. The adsorption capacity of G. lucidum was found to be 126.99 mg g?1. The biosorption follows pseudo-first order kinetics and the isotherms fit well to both Langmuir and Freundlich isotherm models. Isotherms have been used to determine thermodynamic parameters of the process, that is, free energy, enthalpy, and entropy changes. Furthermore, the biosorbent was characterized by scanning electron microscopy and FT-IR analysis. FT-IR analysis of fungal biomass shows the presence of amino, carboxyl, hydroxyl, and carbonyl groups, which were responsible for the biosorption of selenium(IV) ions. The results indicated that the biomass of G. lucidum is an efficient biosorbent for the removal of selenium (IV) ions from aqueous solutions.  相似文献   

6.
《分离科学与技术》2012,47(16):4000-4022
Abstract

The biosorption of Cu(II) and Zn(II) using dried untreated and pretreated Citrus reticulata waste biomass were evaluated. The Cu(II) and Zn(II) sorption were found to be dependent on the solution pH, the biosorbent dose, the biosorbent particle size, the shaking speed, the temperature, the initial metal ions (800 mg/L), and the contact time. Twenty-eight physical and chemical pretreatments of Citrus reticulata waste biomass were evaluated for the sorption of Cu(II) and Zn(II) from aqueous solutions. The results indicated that biomass pretreated with sulphuric acid and EDTA had maximum Cu(II) and Zn(II) uptake capacity of 87.14 mg/g and 86.4 mg/g respectively. Moreover, the Langmuir isotherm model fitted well than the Freundlich model with R 2 > 0.95 for both metal ions. The sorption of Cu(II) and Zn(II) occurred rapidly in the first 120 min and the equilibrium was reached in 240 min. FTIR and SEM studies were also carried out to investigate functional groups present in the biomass and the surface morphological changes of biomass.  相似文献   

7.
《分离科学与技术》2012,47(7):1044-1054
A biomass derived from plant A. nilotica (leave) has been used for efficient removal of trivalent arsenic (As(III)) from aqueous media. The experiments were carried out to study the effects of different parameters i.e., biomass dosage, As(III) concentration, pH, temperature, and contact time. The equilibrium biosorption data were analyzed by the Langmuir and Freundlich isotherm models and satisfactorily both isotherm models could be fitted well. The biosorption mean free energy based on the D-R isotherm model was calculated in the range of 7.50–8.21 kJ mol?1. The data of thermodynamic parameters [enthalpy (ΔH°), Gibbs free energy (ΔG°), and entropy (ΔS°)] were identified that biosorption of As(III) onto studied biomass was spontaneous, feasible, and exothermic under the optimum experimental conditions. Kinetic estimations based on the experimental data demonstrated that the biosorption of As(III) followed the pseudo-second-order kinetics. The studied biomass was successfully applied for the removal of As(III) from contaminated groundwater samples of Jamshoro district.  相似文献   

8.
The contemporary study reveals the potential of dead immobilized Rhizopus Arrhizus (DIRA) by studying the effects of initial pH of solution, contact time, initial Cu(II) concentration, co-ion, desorption and biosorbent reuse on the uptake of Cu(II) from synthetic solution. Optimum pH for Cu(II) biosorption on DIRA was 6.5. Pseudo secondorder kinetic most suitably elucidated the kinetic trend. Removal of Cu(II) by DIRA followed the Freundlich adsorption isotherm. Experiments on effect of temperature revealed endothermic nature of Cu(II) biosorption upon DIRA. Na+ and Ca++ showed synergetic effect, while Mg++ and Zn++ revealed antagonistic effect on the biosorption of Cu(II). It was shown that reuse of DIRA was possible by means of 0.1 M HCl as an eluent.  相似文献   

9.
《分离科学与技术》2012,47(3):615-644
Abstract

In the present study we reported for the first time, the feasibility of pecan nutshell (PNS-Carya illinoensis) as an alternative biosorbent to remove Cr(III), Fe(III) and Zn(II) metallic ions from aqueous solutions. The ability of PNS to remove these metallic ions was investigated by using batch biosorption procedure. The effects, such as pH and the biosorbent dosage on the adsorption capacities of PNS were studied. Five kinetic models were tested, the adsorption kinetics being the better fitted one to the fractionary-order kinetic model.

The equilibrium data were fitted to Langmuir, Freundlich, Sips, and Redlich-Peterson isotherm models. Taking into account a statistical error function, the data were best fitted to Sips isotherm models. The maximum biosorption capacity of PNS were 93.01, 76.59, and 107.9 mg g?1 for Cr(III), Fe(III), and Zn(II), respectively.  相似文献   

10.
The hypothesis that the dried, ground biomass of the red marine alga Gracilaria tenuistipitata could be used for the efficient removal of lac dye from aqueous solution was assessed in this work. The effects of parameters such as initial pH, biosorbent dosage, contact time, initial dye concentration, and temperature on the biosorption capacity of the dye were investigated. Equilibrium data were analysed using Langmuir, Freundlich, and Temkin isotherm models, and the Freundlich model provided the highest coefficient of determination values. Biosorption kinetic data were successfully described with a pseudo‐second‐order model at initial dye concentrations of 50, 80, 100, and 120 mg l?1. The thermodynamic parameters of biosorption – enthalpy change (?H° = ?30.64 kJ mol?1), free energy change (?G° = 4.32 kJ mol?1 at 303 K to 7.78 kJ mol?1 at 333 K), and entropy change (?S° = ?115.38 J mol?1 K?1) – were determined. The negative value of the enthalpy change and positive values of the free energy change indicate that the biosorption process is exothermic and non‐spontaneous. The negative value of the entropy change is consistent with decreased randomness at the solid–liquid interface with dye biosorption. Attenuated total reflectance–Fourier transform infrared spectroscopic analysis confirmed the presence of lac dye on the G. tenuistipitata material. The efficiency of lac dye removal by this biomass material at 20 g l?1 and with an initial dye concentration of 50 mg l?1 in acidic solution was 71%, which indicated its potential usefulness as a new dye biosorbent.  相似文献   

11.
Trichoderma reesei was used as a biosorbent for the removal of Co2+, Cu2+, Ni2+, Pb2+ and Zn2+ ions. The influence of factors such as pH, mass of biomass, contact time and temperature on biosorption efficiency was optimized. To calculate the isotherm parameters for the biosorption of Co2+, Cu2+, Ni2+, Pb2+ and Zn2+ ions at optimized conditions, the experimental equilibrium data were fitted to Langmuir and Freundlich models. The calculated thermodynamic parameters, ΔG°, ΔH° and ΔS° showed that the biosorption of Co2+, Cu2+, Ni2+, Pb2+ and Zn2+ ions onto T. reesei biomass was feasible, spontaneous and endothermic at the optimized conditions. The results of kinetic analysis showed that the biosorption of the selected metal ions onto T. reesei biomass obeys pseudo second order kinetics.  相似文献   

12.
Using attapulgite (ATP) as matrix, chitosan (CS) as functional monomer, and introducing the surface ionimprinting concept, a new Cu(II)-IIP was prepared, and characterized by SEM, XRD and FT-IR. The adsorption of Cu(II) aqueous solution with Cu(II)-IIP was investigated by flame atomic adsorption spectroscopy (FAAS). The polymer has good selectivity for Cu(II) from competitive metal ions, and the selectivity coefficient of Cu(II) relation to Pb(II), Cd(II) was 78.45 and 82.44, respectively. Sorption equilibrium isotherms could be described by Langmuir and Freundlich models; the Freundlich isotherm has shown the best agreement with experimental data, and experimental value of maximum adsorption capacity for Cu(II) was 35.20 mg/g. The obtained thermodynamic parameter (ΔG o , ΔH o , ΔS o ) showed that the Cu(II) adsorption process is a spontaneous and endothermic process. The kinetic data showed that pseudo-second-order kinetic model agrees very well with the dynamic behavior for the sorption of Cu(II) onto Cu(II)-IIP.   相似文献   

13.
The feasibility of employing Tamarindus indica (tamarind) fruit shell (TFS) as low-cost biosorbent for removal of Cu(II) from aqueous solutions was investigated. Batch experiments were carried out as function of initial solution pH (2–7), contact time (10–240 min), initial Cu(II) concentration (20–100 mg L?1), biosorbent dose (0.5–5 g) and temperature (293–313 K). Biosorption equilibrium data were well described by the Langmuir isotherm model with maximum biosorption capacity of 80.01 mg g?1 at 313 K. Biosorption of Cu(II) followed pseudo-second-order kinetics. Gibbs free energy (ΔG0) was spontaneous for all interactions, and the biosorption process exhibited endothermic enthalpy values. To ascertain the practical applicability of the biosorbent, fixed-bed column studies were also performed. The breakthrough time increased with increasing bed height and decreased with increasing flow rate. The Thomas model as well as the Bed Depth Service Time (BDST) model was fitted to the dynamic flow experimental data to determine the column kinetic parameters useful for designing large-scale column studies. The Thomas model showed good agreement with the experimental results at all the process parameters studied. It could be concluded that TFS may be used as an inexpensive and effective biosorbent without any treatment or any other modification for the removal of Cu(II) ions from aqueous solutions.  相似文献   

14.
The present research provides information on the Cr(VI) removal potential of NaCl-modified Ceratophyllum demersum, an aquatic plant biomass. The effects of various parameters including pH, biomass dosage, contact time, and initial concentration on Cr(VI) biosorption were investigated. The best conditions for Cr(VI) biosorption in the present study were: pH of 2, biosorbent dose of 8 g/L, and contact time of 60 min. Under these conditions, maximum adsorption capacity of modified C. demersum for Cr(VI) was 10.20 mg/g. The experimental biosorption data were modeled by Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherms. The biosorption process followed the Langmuir isotherm model with a high coefficient of determination (R2 > 0.99). The biosorption process followed pseudo-second-order kinetics. Further, the biosorbent was characterized by Fourier transform-infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The results showed that biosorption of Cr(VI) on NaCl-modified C. demersum occurred through chemical sorption.  相似文献   

15.
16.
Lignocellulosic materials can be used as biosorbent for refinement of the wastewaters when they are available in large quantities. Many studies were conducted to uptake Cu (II) ion from aqueous solutions. In this paper, the biosorption efficiency of Cu (II) ions from a synthetic aqueous solution was investigated using Gundelia tournefortii (GT), without any pre-treatment. Fourier transform infrared spectroscopy, scanning electron microscopy and determining the point of zero charge were employed to characterise the biosorbent. Batch experiments were performed to study the influence of pH, biosorbent dosage, contact time, temperature and initial Cu (II) concentration on Cu (II) removal. The biosorption isotherms were investigated using the Langmuir, Freundlich, Temkin and D-R isotherm models. The findings show that the biosorption isotherm was better fitted by the Langmuir equation and the maximum adsorption capacity of GT was found to be 38.7597 mg·g-1. The kinetics data were analysed by pseudo-first order, pseudo-second order, and intra-particle diffusion equations. The results indicate that the pseudosecond-order model was found to explain the adsorption kinetics most effectively. The values of thermodynamic parameters including Gibbs free energy (△G°), enthalpy (△H°), and entropy (△S°) demonstrate that the biosorption process was exothermic and spontaneous. The multiple nonlinear regression (MnLR) and artificial neural network (ANN) analyses were applied for the prediction of biosorption capacity. A relationship between the predicted and observed data was obtained and the results show that the MnLR and ANN models provided successful predictions.  相似文献   

17.
《分离科学与技术》2012,47(1):192-211
Abstract

In this study, the biosorption of Basic Blue 9 (BB9) dye from aqueous solutions onto a biomass of Euphorbia rigida was examined by means of the initial biosorbate concentration, biosorbent amount, particle size, and pH. Biosorption of BB9 onto E. rigida increases with both the initial biosorbate concentration and biosorbent amount, whereas decreases with the increasing particle size. The experimental data indicated that the biosorption isotherms are well‐described by the Langmuir equilibrium isotherm equation at 20, 30, and 40°C. Maximum biosorption capacity was 3.28×10?4 mol g?1 at 40°C. The biosorption kinetics of BB9 obeys the pseudo‐second‐order kinetic model. The thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated to estimate the nature of biosorption. These experimental results have indicated that E. rigida has the potential to act as a biosorbent for the removal of Basic Blue 9 from aqueous solutions.  相似文献   

18.
The removal of Ni(II) from aqueous solutions using biomass prepared from Ceiba pentandra hulls powder modified with citric acid treatment (CAMCPH) has been studied by batch method. The biosorbent was characterised before and after citric acid modification using SEM, FT‐IR and XRD. Experimental parameters that influence the biosorption of Ni(II), such as pH, biosorbent dose, contact time and initial concentration of metal ion have been investigated. The adsorption of Ni(II) increased with increase in contact time and reached equilibrium within 50 min. The maximum removal of Ni(II) was observed at pH 5.0. The kinetic data were analysed using three adsorption kinetic models: the pseudo‐first, second‐order kinetics and intra‐particle diffusion. The results showed that the pseudo‐second‐order model fits the experimental data very well. The equilibrium data were analysed using Langmuir, Freundlich and Dubinin–Radushkevich isotherm models. Langmuir model provided the best correlation for the adsorption of Ni(II) by CAMCPH and the monolayer biosorption capacity for Ni(II) removal was 34.34 mg/g. Desorption experiments were carried out using HCl solution and the recovery of the metal ion from CAMCPH was found 98%. Desorption experiments showed the feasibility of regeneration of the biosorbent for further use after treating with dilute HCl. © 2011 Canadian Society for Chemical Engineering  相似文献   

19.
In the present study a low-cost waste biomass derived from canned food plant, was tested for its ability to remove reactive textile dye from aqueous solutions. The batch biosorption experiments were carried out at various pH, biosorbent dosage, contact time and temperature. Optimum decolorization was observed at pH 2.0 and 1.6 g dm− 3 of biomass dosage within 20 min. The first-order and the pseudo-second-order kinetics were investigated for the biosorption system. The applicability of the Langmuir and Freundlich isotherm models was examined. The thermodynamic parameters for the biosorption were also calculated. The experimental results in this study indicated that this low-cost biomaterial was an attractive candidate for the removal of textile dye Reactive Red 198 (RR198) from aqueous solutions.  相似文献   

20.
《分离科学与技术》2012,47(13):2025-2030
In this study, the approach is to evaluate the use of Trichoderma asperellum biomass as a biosorbent for Cu2+ removal. Both live and dead cells are investigated. The feasibility of T. asperellum as biosorbent is further explored by pre-treating the cells and evaluating their subsequent Cu2+ removal efficacy. Results revealed that dead cells of T. asperellum attained biosorption equilibrium within the first 10 min of contact with Cu2+ while live cells reached equilibrium after 20 min. Dead cells also absorbed significantly higher amounts of Cu2+ (12.42 mg g?1) compared to live cells (5.69 mg g1). The biosorption mechanism for both live and dead cells of T. asperellum complied with the Langmuir isotherm and pseudo second-order kinetic, suggesting monolayer sorption. Pre-treatment of dead cells with alkali solutions (NaOH and laundry detergent) further improved sorption efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号