首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article a modified polydimethylsiloxane (PDMS) blended polystyrene (PS) interpenetrating polymer network (IPN) membranes supported by Teflon (polytetrafluoroethylene) ultrafiltration membrane were prepared for the separation of ethanol in water by pervaporation application. The relationship between the surface characteristics of the surface‐modified PDMS membranes and their permselectivity for aqueous ethanol solutions by pervaporation are discussed. The IPN supported membranes were prepared by sequential IPN technique. The IPN supported membrane were tested for the separation performance on 10 wt % ethanol in water and were characterized by evaluating their mechanical properties, swelling behavior, density, and degree of crosslinking. The results indicated that separation performance, mechanical properties, density, and the percentage of swelling of IPN membranes were influenced by degree of crosslink density. Depending on the feed temperature, the supported membranes had separation factors between 2.03 and 6.00 and permeation rates between 81.66 and 144.03 g m?2 h?1. For the azeotropic water–ethanol mixture (10 wt % ethanol), the supported membrane had at 30°C a separation factor of 6.00 and a permeation rate of 85 g m?2 h?1. Compared to the PDMS supported membranes, the PDMS/PS IPN supported blend membrane ones had a higher selectivity but a somewhat lower permeability. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
《分离科学与技术》2012,47(17):2531-2539
ZIF-8-filled polydimethylsiloxane (PDMS) membranes, PDMS/ZIF-8, were prepared by a two-step polymerization process and were used to recover n-butanol from an aqueous solution by pervaporation (PV). Compared with pure PDMS membrane, PDMS/ZIF-8 membranes demonstrated an obviously higher n-butanol permselectivity. As an increase of ZIF-8 content, n-butanol/water selectivity increased initially and then decreased, while the n-butanol and water permeability decreased monotonously. PDMS/ZIF-8 membrane containing 2 wt% ZIF-8, that is, PDMS/ZIF-8-2 showed the highest selectivity. On the other hand, selectivity and permeability for n-butanol and water of PDMS/ZIF-8-2 membrane decreased with the increase of operating temperature. The selectivity and permeability for n-butanol reached 7.1 and 3.28 × 105 barrer, respectively, at 30°C when the feed concentration of n-butanol was 0.96 wt%.  相似文献   

3.
《分离科学与技术》2012,47(1-4):487-504
Abstract

In recent years, there has been increased interest in developing inorganic and composite membranes for in-situ separation of hydrogen to achieve an equilibrium shift in catalytic membrane reactors. The productivity of these membrane reactors, however, is severely limited by the poor permeability and selectivity of available membranes. To develop a new class of permselective inorganic membranes, electroless plating has been used to deposit palladium thin-films on a microporous ceramic substrate. A palladium thin-film coating was deposited on a microporous ceramic disk (α-alumina, φ 39 mm × 2 mm thickness, nominal pore size 150 nm and open porosity ≈ 42%) by electroless deposition. The film was evaluated by SEM and EDX analysis. A steady-state counter-diffusion method, using gas chromatographic analysis, was used to evaluate the permeability and selectivity of the composite palladium membrane for hydrogen separation at temperatures from 373 to 573 K. The pressure on the high pressure side of the membrane ranged from 170 to 240 kPa and the low pressure side was maintained at 136 kPa. The measured hydrogen permeabilities at 573 K were found to be 1.462×10?9 mol·m/m2·s·Pa0.778, and 3.87×10?8 mol · m/m2 · s · Pa0.501 for palladium film thicknesses of 8.5 and 12 μm, respectively. The results indicate that the membrane has both high permeability and selectivity for hydrogen and may find applications in high temperature hydrogen separation and membrane reactors.  相似文献   

4.
In this article, the composite polydimethylsiloxane (PDMS) membranes supported by cellulose acetate (CA) microfiltration membrane were successfully prepared by adding modified zeolite particles with a silane coupling agent, NH3–C3H6–Si(OC2H5)3. The sorption and diffusion behaviors of ethanol and water in the films were studied. The results showed that with the increase in the modified zeolite content, the solubility selectivity increased, but the diffusion selectivity first increased, then decreased. The effects of modified zeolite content and feed temperature on the pervaporation performance of the composite membranes in 10 wt % ethanol/water mixture were also investigated. When modified zeolite loading was 20 wt %, for 10 wt % ethanol/water mixture at 40°C, the permeate flux was 348.7 g·m?2·h?1, the separation factor was 14.1, and the permeate separate index was 4568, respectively. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41897.  相似文献   

5.
《分离科学与技术》2012,47(3):420-427
In this article, the composite polydimethylsiloxane (PDMS) membranes supported by cellulose-acetate (CA) microfiltration membrane were successfully prepared by adding nano-fumed silica particles modified with a silane coupling reagent, NH2-C3H6-Si(OC2H5)3. The effects of silica content, feed concentration, and feed temperature on the pervaporation performances of the nano-composite PDMS membranes were investigated for recovering ethanol from aqueous solution by pervaporation. It was found that adding the modified silica particles significantly improved the pervaporation performances of the composite membranes. When the silica content in the membrane was 5 wt%, for a 5 wt% ethanol/water mixture at 40°C, the permeation flux of the membrane maintained about 200 g · m?2 · h?1 and separation factor reached the maximum value of 19.  相似文献   

6.
BACKGROUND: In the present work, the flavor compounds of natural juice of bilberries were qualitatively analyzed by GC‐MS, leading to the identification of trans‐Hex‐2‐en‐1‐ol as one of the major ‘impact aroma’ compounds of this fruit. The pervaporation of trans‐Hex‐2‐en‐1‐ol from diluted aqueous solutions was studied using commercial polydimethylsiloxane (PDMS) capillary membranes. The influences of solvent composition (water/ethanol mixtures), initial concentration of the aroma compound, flow rate and temperature of the feed were studied. RESULTS: High selectivity of the PDMS membrane towards the aroma compound was obtained, leading to enrichment factors in the range 100 < β < 200. Mass transfer resistance was found to be located in the pervaporation membrane. Experimental data showed a linear dependency of the permeation flux of trans‐Hex‐2‐en‐1‐ol on the differences in partial pressures of the compound across the pervaporation membrane. The permeability coefficient of the PDMS membrane to the transport of trans‐Hex‐2‐en‐1‐ol was calculated as Pm, Hex(50 °C) = 7.62 × 10?11 mol m?1 s?1 Pa?1. CONCLUSION: The membrane used was found to be very selective toward trans‐Hex‐2‐en‐1‐ol. A model based on the solution‐diffusion mechanism was applied. The mass transfer parameters needed for the design of a pervaporation process for aroma compound recovery were obtained. Copyright © 2008 Society of Chemical Industry  相似文献   

7.
A series of phthalonitrile end-capped sulfonated polyarylene ether nitriles are synthesized via K2CO3 mediated nucleophilic aromatic substitution reaction at various molar ratios. The as-prepared polymer structures are confirmed by 1H NMR and FTIR spectroscopy. The properties of membranes cast from the corresponding polymers are investigated with respect to their structures. The membranes exhibit good thermal and mechanical properties, low methanol permeability (0.01?×?10?6–0.58?×?10?6 cm2·s?1 at 20 °C), and high proton conductivity (0.021–0.088 S·cm?1 at 20 °C). The introduction of phthalonitrile is proved to increase intermolecular interaction, mainly contributing to the reduction in water uptake, swelling ratio, and methanol permeability. More importantly, its introduction does not decrease the proton conductivity, but there is a slight increase. Furthermore, the selectivity of SPEN-CN-50 can reach 4.11?×?105 S·s·cm?3, which is about nine times higher than that of Nafion 117. All the data show that the as-prepared membranes may be potential proton exchange membrane for DMFCs applications.  相似文献   

8.
Asymmetric integrally skinned capillary tubes were produced from the polymers PEI (polyetherimide) and PVP (polyvinylpyrrolidone) for vapour permeation modules which were applied for the separation of water from organic compounds and gases. Water treatment and recovery of desirable organic compounds was achieved. The capillary tubes had intrinsic permeability coefficients of 7.5 × 10?7 mol/m2·s·Pa for water and 1.6 × 10?9 mol/m2·s·Pa for 1-propanol for a 1:1 mass ratio vapour feed mixture under pyrolysis conditions. The vapour was fed at the interior of the capillary tubes with total pressure of 30 kPa; the permeate total pressure was 14 kPa, and the temperature was 86°C. Modules, with surface areas up to 1.0 m2, were constructed and tested with feed flow rates as high as 4 kg/h with a process development unit. Tests were performed with the vapours from wood chips and contaminated soils subjected to vacuum pyrolysis.  相似文献   

9.
b‐oriented silicalite‐1 membranes on porous silica supports were synthesized using gel‐free secondary growth. The porous silica supports were made by pressing crushed quartz fibers followed by sintering and polishing, and further modified by slip‐coating three layers of Stöber silica particles (1000, 350, and 50 nm). The b‐oriented seed layers were prepared by rubbing silicalite‐1 particles (2 μm × 0.8 μm × 3 μm along a‐, b‐, and c‐axis, respectively) after depositing a polymeric layer on the support. After silicalite‐1 seed deposition, a final coating of spherical silica particles was applied. Well‐intergrown, μm‐thick, b‐oriented membranes were obtained, which, after calcination, exhibited ethanol permselectivity in ethanol/water mixture pervaporation. At 60°C and for ~5 wt % ethanol/water mixtures, the best membrane exhibited overall pervaporation separation factor of 85 (corresponding to membrane intrinsic selectivity of 7.7) and total flux of 2.1 kg/(m2·h). This performance is comparable to the best performing MFI membranes reported in the literature. © 2015 American Institute of Chemical Engineers AIChE J, 62: 556–563, 2016  相似文献   

10.
Reverse osmosis separation of phenol in various alcoholic solutions using porous cellulose acetate membranes was investigated. The permeation behavior of phenol was measured for cellulose acetate membranes having various pore size distributions which were prepared by annealing at four different temperatures. Some differences were found between the aqueous and the alcoholic solutions in solute permeabilities and product rates. Membranes annealed at 90°C showed higher permselectivity than membranes annealed at lower temperatures. The pore character was classified into two types according to the relation of the product rate of 1-propanol and that of water. It was found in a series of alcoholic solutions that the permeability of phenol, the product rate, and the apparent partition coefficient are closely related to the carbon number of the alcohols, but the values of Jv × η (ca. 1.25 × 10?4 poise·m3/m2·day) and of the permselectivity coefficient (ca. 0.83) remain constant. The result was analyzed by using the three-dimensional solubility parameter to obtain some information for the partition mechanism of solutes in aqueous and alcoholic solutions.  相似文献   

11.
《分离科学与技术》2012,47(12):2840-2869
Abstract

This work addresses the applicability of different membrane pore blocking models for the prediction of flux decline mechanisms during dead end microfiltration (MF) of stable oil-in-water (o/w) emulsions using relatively low-cost ceramic membranes. Circular disk type membranes (52.5 mm diameter and 4.5 mm thickness) were prepared by the paste method using locally available low-cost inorganic precursors such as kaolin, quartz, calcium carbonate, sodium carbonate, boric acid, and sodium metasilicate. Characterization of the prepared membrane was done by SEM analysis, porosity determination, and pure water permeation through the membrane. Hydraulic pore diameter, hydraulic permeability, and hydraulic resistance of the membrane was evaluated as 0.7 µm, 1.94 × 10?6 m3/m2·s·kPa and 5.78 × 1011 m2/m3, respectively. The prepared membrane was used for the treatment of synthetic stable o/w emulsions of 40 and 50 mg/L crude oil concentration in batch mode with varying trans-membrane pressure differentials ranging from 41.37 to 165.47 kPa. The membrane exhibited 96.97% oil rejection efficiency and 21.07 × 10?6 m3/m2·s permeate flux after 30 min of experimental run at 165.47 kPa trans-membrane pressure for 50 mg/L oil concentration. Different pore blocking, models such as complete pore blocking, standard pore blocking, intermediate pore blocking and cake filtration were used to gain insights into the nature of membrane fouling during permeation. The observed trends for flux decline data convey that the decrease in permeate flux was initially due to intermediate pore blocking (during 1 to 10 minutes of experimental run) followed with cake filtration (during 10 to 30 minutes of experimental run). Based on retail prices of the inorganic precursors, the membrane cost was estimated to be 130 $/m2. Finally, preliminary process economic studies for a single stage membrane plant were performed for the application of the prepared membrane in industrial scale treatment of o/w emulsions. A process economics study inferred that the annualized cost of the membrane plant would be 0.098 $/m3 feed for treating 100 m3/day feed with oil concentration of 50 mg/L.  相似文献   

12.
Using low-cost clay supports as substrates, ceramic–LTA zeolite composite membranes (Z1–Z4) were fabricated with hydrothermal crystallization. The composite membranes were achieved with variations in the sequential zeolite depositional steps. For Z1–Z4 membranes, various characterization techniques such as thermogravimetric (TG), particle size distribution (PSD), X-ray diffraction (XRD), and field emission scanning electron microscopic (FE-SEM) analysis were applied. For the Z1–Z4 membranes, the pure water permeability, porosity, and average pore size varied from 1.22 × 10?7 to 1.19 × 10?8 m3/m2s kPa, 30–23%, and 215–76 nm, respectively. For the Z4 membrane, ultrafiltration experiments were conducted at a pH of 2.5 and transmembrane pressure differential of 207 kPa using aqueous bovine serum albumin (BSA) solutions. The optimal flux and rejection correspond to 4.54 × 10?7 m3/m2s and 80%, respectively.  相似文献   

13.
Quaternized poly(vinyl alcohol)/chitosan (QPVA/CS) composite membranes were prepared by solution casting method with AlCl3·6H2O aqueous solution as solvent for CS and glutaraldehyde as a crosslinker. The crystalline, thermal and mechanical properties of the QPVA/CS composite membranes were studied by Fourier transform infrared spectroscopy, X-ray diffractometry, differential scanning calorimetry, thermogravimetry and tensile test measurements, respectively. The composite membranes were immersed in potassium hydroxide aqueous solution to form polymer electrolyte membranes. The alkaline uptake, swelling ratio, ion conductivity and methanol permeability of the electrolyte membranes were studied. The experimental results indicated that aluminum chloride hexahydrate (AlCl3·6H2O) had a positive effect on the mechanical properties of the QPVA/CS composite membrane. The elongation-at-break of this membrane reached the maximum of 401.0%. The alkaline uptake and swelling ratio of the composite membranes decreased. With the addition of 30 wt% AlCl3·6H2O, the composite membrane showed the ion conductivity and methanol permeability of 1.82 × 10?2 S cm?1 and 2.17 × 10?6 cm2 s?1, respectively. These values were higher than those of the membrane with acetic acid as the solvent for CS. The selectivity of the QPVA/CS membrane could reach 8.39 × 103 S s cm?3. This study showed that with AlCl3·6H2O as the solution for CS, the high performance QPVA/CS composite alkaline polymer electrolyte membrane could be prepared.  相似文献   

14.
We report the permeabilities of deuterium and helium-4 through poly(vinyl alcohol) (PVA) over the temperature range of 25–125°C. For deuterium, permeabilities ranged from 0.5 × 10?18 to 50 × 10?18 mol·m/m2·s·Pa at these two extreme temperatures. Helium permeabilities were roughly five times higher. We also studied the effects of different curing temperatures and time on the deuterium permeability and found that, to within experimental error, results were the same for samples heat treated at any temperature between 100°C and 140°C. Aluminizing the samples using a special process decreased the permeabilities by a factor of at least 5. A sensitive apparatus constructed around a quadrupole spectrometer was used to measure the very low permeabilities. The apparatus is described in detail.  相似文献   

15.
Cellulose-based composites containing various amounts of SBA-15 mesoporous silica were prepared by NMMO-technology, and their morphologies, mechanical properties, permeability for oxygen and water vapor were studied. The investigation suggested that both the modified and unmodified mesoporous silica materials can improve the elongation at break of the cellulose films. However, the incorporation of the mesoporous silica materials can reduce the tensile strength of the films, and the modified one has less effect on that than the unmodified one. The composites films with rational mechanical properties have adjustable oxygen permeability (7.90 × 10?15–94.6 × 10?15 cm3 · cm/cm2 · s · Pa) and water vapor permeability (7.12 × 10?13–4.10 × 10?13 g · cm/cm2 · s · Pa).  相似文献   

16.
《分离科学与技术》2012,47(12):1908-1914
3A-filled hydrophilic polyurethane (PU) membranes were prepared by incorporating zeolite 3A into PU for pervaporation separation of acetaldehyde and water mixtures (acetaldehyde concentration 2 wt%–20 wt%). The composite membranes were characterized by Fourier transform infrared spectroscopy and X-ray diffraction. The morphology and thermal stability of these membranes were also investigated. The effects of zeolite 3A on the sorption, diffusion, and pervaporation performance were evaluated. The swelling study showed that 3A-PU membrane had higher swelling degree in acetaldehyde aqueous solution than in pure water. And the swelling degree of the composite membrane in acetaldehyde solution increased with the 3A content. The permeation flux and water/acetaldehyde separation factor first increased and then decreased with increasing 3A content. The reason may be that a proper quantity of 3A will enlarge the free volume fraction of PU while excessive 3A lead to its poor dispersion. The highest permeation flux of the composite membrane could reach 223 g · m?2 · h?1 and the maximum water/acetaldehyde selectivity achieved 7.5. The calculation of sorption selectivity and diffusion selectivity showed that diffusion played a more important role in this process.  相似文献   

17.
《分离科学与技术》2012,47(11):2483-2499
Abstract

The selective removal of water from ethanol through pervaporation was demonstrated in a microchannel device using a commercial membrane. Photolithography and dry etching techniques were employed for fabrication of the microseparator with hydraulic diameters of 30 µm to 80 µm. Experiments conducted at 90°C and 2–3 Torr, with Reynolds Numbers ranging from 8 to 91, resulted in an average water and ethanol permeance of 1.2×10?3 and 8×10?5 cm3/cm2 · s · cmHg respectively. A mass transfer analysis involving Sherwood correlations was used to calculate the theoretical boundary layer resistance. The comparison of overall mass transfer coefficient with the boundary layer coefficients suggests that the membrane was the dominant resistance for this system.  相似文献   

18.
The behavior of sulfonated poly(ether ether ketone) (sPEEK) membranes in ethanol–water systems was studied for possible application in direct ethanol fuel cells (DEFCs). Polymer membranes with different degrees of sulfonation were tested by means of uptake, swelling, and ethanol transport with dynamic measurements (liquid–liquid and liquid–gas systems). Ethanol permeability was determined in an liquid–liquid diffusion cell. For membranes with an ion‐exchange capacity (IEC) between 1.15 and 1.75 mmol/g, the ethanol permeability varied between 5 × 10?8 and 1 × 10?6 cm2/s, being dependent on the measuring temperature. Ethanol and water transport in liquid–gas systems was tested with pervaporation as a function of IEC and temperature. Higher IEC accounted for higher fluxes and lower water/ethanol selectivity. The temperature had a large effect on the fluxes, but the selectivity remained constant. Furthermore, the membranes were characterized with proton conductivity measurements. The proton diffusion coefficient was calculated, and a transition in the proton transfer mechanism was found at a water number of 12. Membranes with high IEC (>1.6 mmol/g) exhibited larger proton diffusion coefficients in ethanol–water systems than in water systems. The membrane with the lowest IEC exhibited the best proton transport to ethanol permeability selectivity. The use of sPEEK membranes in DEFC systems depends on possible modifications to stabilize the membranes in the higher conductive region rather than on modifications to increase the proton conductivity in the stable region. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
Polydimethylsiloxane (PDMS)/polystyrene (PSt) interpenetrating polymer network (IPN) membranes were prepared by the bulk copolymerization of styrene and divinylbenzene in the PDMS networks. The interpenetration of PDMS and PSt resulted in the improvement of mechanical properties of PDMS. Transmission electron microscope (TEM) observation demonstrated that the PDMS/PSt IPN membranes have microphase-separated structures consisting of a continuous PDMS phase and a discontinuous PSt phase. When an aqueous ethanol solution was permeated through the PDMS/PSt IPN membranes by pervaporation, the PDMS/PSt IPN membranes exhibited ethanol permselectivity, regardless of the PDMS content. The effects of their microphase-separated structures on the permeability and selectivity for aqueous ethanol solutions are discussed experimentally and theoretically. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
Mixed matrix membranes (MMMs) were made by incorporating vinyltrimethoxysilane (VTMS)‐modified Silicalite‐1 zeolite nanoparticles (V‐Silicalite‐1 NPs) into fluorinated polybenzoxazine (F‐PBZ) modified polydimethylsiloxane (PDMS) polymer through in situ polymerization method. The membrane morphology, surface wettability, and pervaporation performance were systematically investigated. The addition of F‐PBZ into PDMS membranes resulted in substantially improved flux and marginal increase of separation factor, which is the result of higher free volume and higher hydrophobicity caused by the addition of F‐PBZ. The modification of Silicalite‐1 NPs improved the interfacial contact between zeolite crystals and polymer phase. The incorporation of hydrophobic V‐Silicalite‐1 zeolite NPs into the PDMS membranes led to much higher separation factor but reduced flux, which is the result of increased hydrophobicity and reduced free volume. The three‐component MMMs with V‐Silicalite‐1 zeolite NPs in the F‐PBZ fluorinated PDMS exhibited separation factor of 28.7 and flux of 0.207 kg m?2 h?1 for 5 wt % ethanol aqueous solution at 50 °C, while the pure PDMS membranes only had separation factor of 4.8 and flux of 0.088 kg m?2 h?1. The substantial increase of both flux and separation factor were attributed to the higher hydrophobicity and free volume caused by the incorporation of both hydrophobic zeolite crystals and F‐PBZ polymer into the PDMS membranes. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44753.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号