首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《分离科学与技术》2012,47(4):766-777
Abstract

Aqueous ammonia was investigated as a new absorbent of the chemical absorption process for CO2 capture from combustion flue gas. The effects of the temperature and concentration of aqueous ammonia on CO2 absorption in a semi‐batch reactor were studied by interpreting breakthrough curves. Raman spectroscopy analysis of CO2 loaded aqueous ammonia provided concentration changes of bicarbonate, carbonate, and carbamate as well as CO2 sorption capacity at given time during the absorption with 13 wt% aqueous ammonia at 25°C. It was observed that carbamate formation was dominating at the early stage of absorption. Then, the bicarbonate formation took over the domination at the later stage while the carbonate remained unchanged.  相似文献   

2.
Three soluble hyperbranched polyazomethines containing oligosiloxane end group HBP-PAZ-SiOn were successfully synthesized. HBP-PAZ-SiOns were used as modifiers of ethyl cellulose (EC) and polysulfone (PS) membranes. Blend membranes, HBP-PAZ-SiOn/EC and HBP-PAZ-SiOn/PS were prepared by blending the THF solution of HBP-PAZ-SiOn with ethanol solution of EC and dichloromethane solution of PS, respectively. Surprisingly, the permeabilities for CO2 of the blend membranes were more than 15–16 times higher than those of pure EC and PS membranes without any drop of pemselectivity to N2. This unusual improvement has been achieved by both enhancement of diffusivity for carbon dioxide and nitrogen by the oligosiloxane groups and enhancement of affinity of the amino groups with carbon dioxide at the end groups of HBP-PAZ-SiOn.  相似文献   

3.
Mixed solvents are a combination of chemical and physical solvents and have some advantages over traditional treating solvents for the removal of acid gases from gas streams. The solubility of H2S and CO2in a mixed solvent consisting of AMP (2-amino-2-methyl-l-propanol), sulfolane, and water has been measured at 40 and 100°C at partial pressures of the acid gas to 6000 kPa. The solubility in the mixed solvent was compared with the solubility in an aqueous solution of equivalent amine concentration. At solution loadings less than 1 mol acid gas/mol amine, the solubility of the acid gas is lower in the mixed solvent than in the corresponding amine solvent. At higher loadings, the trend is reversed and the solubility is greater in the mixed solvent. The results are rationalized in terms of the effect of the physical solvent component on the chemical reaction and physical vapor-liquid equilibria. The solubility model of Deshmukh and Mather was used to correlate the data.  相似文献   

4.
Deep eutectic solvents (DESs) have been widely used to capture CO2 in recent years. Understanding CO2 mechanisms by DESs is crucial to the design of efficient DESs for carbon capture. In this work, we studied the CO2 absorption mechanism by DESs based on ethylene glycol (EG) and protic ionic liquid ([MEAH][Im]), formed by monoethanolamine (MEA) with imidazole (Im). The interactions between CO2 and DESs [MEAH][Im]-EG (1:3) are investigated thoroughly by applying 1H and 13 C nuclear magnetic resonance (NMR), 2-D NMR, and Fourier-transform infrared (FTIR) techniques. Surprisingly, the results indicate that CO2 not only binds to the amine group of MEA but also reacts with the deprotonated EG, yielding carbamate and carbonate species, respectively. The reaction mechanism between CO2 and DESs is proposed, which includes two pathways. One pathway is the deprotonation of the [MEAH]+ cation by the [Im] anion, resulting in the formation of neutral molecule MEA, which then reacts with CO2 to form a carbamate species. In the other pathway, EG is deprotonated by the [Im], and then the deprotonated EG, HO-CH2-CH2-O, binds with CO2 to form a carbonate species. The absorption mechanism found by this work is different from those of other DESs formed by protic ionic liquids and EG, and we believe the new insights into the interactions between CO2 and DESs will be beneficial to the design and applications of DESs for carbon capture in the future.  相似文献   

5.
《分离科学与技术》2012,47(2):283-296
Abstract

In this study, a new preparation method providing greatly improved CO2 sorption is introduced. Li2ZrO3 sorbent was prepared by low temperature co‐precipitation and compared in CO2 sorption performance with a sorbent prepared by the conventional high temperature solid‐state reaction method. The two sorbents were characterized using scanning electron microscopy, X‐ray diffraction and thermo‐gravimetric analysis. The Li2ZrO3 powder prepared by the relatively simple co‐precipitation method showed significantly better performance than the one prepared by solid‐state reaction with respect to both kinetics and CO2 sorption capacity. Extensive study of the powder prepared by co‐precipitation has been performed at various conditions.  相似文献   

6.
Based on experiments on desulfurization, CaSO4 decomposition, and a system approach using theoretical analysis, efficient in-furnace desulfurization in O2/CO2 combustion was investigated. The influence of combustion conditions and sorbent properties on system desulfurization efficiency was clarified. The global desulfurization efficiency was found to increase with O2 purity. The global desulfurization efficiency in a dry recycle was higher than that in a wet recycle. The global efficiency of in-furnace desulfurization decreased with initial O2 concentration. As the temperature increased, the global desulfurization efficiency increased first and then decreased due to the decomposition of CaSO4. In the temperature range investigated, the global desulfurization efficiency in O2/CO2 coal combustion was much higher than that of conventional coal combustion in air. The global desulfurization efficiency decreased with sorbent size. When the particle radius decreased to one quarter, the global desulfurization efficiency doubled, becoming as high as 80%. The global desulfurization efficiency was very different among the three sorbents investigated, whether in O2/CO2 combustion or in conventional air combustion. The global desulfurization efficiency increased in the order of Ca(OH)2, scallop, and limestone in O2/CO2 combustion, but in the order of scallop, Ca(OH)2, and limestone in conventional air combustion. Nevertheless, all three sorbents demonstrated much higher desulfurization efficiency in O2/CO2 combustion than in conventional air combustion.  相似文献   

7.
A rigorous model for absorption of carbon dioxide into aqueous N-methyldiethanolamine (MDEA) based on the assumption of reversible reactions and the simplified model with a pseudo-first order irreversible reaction hypothesis were employed to compare with experimental data. The experimental absorption rates were obtained from a characterized double stirred-cell absorber with a planar gas-liquid interface. It was demonstrated that the numerical solution of the rigorous model provides a better prediction for the absorption rate of carbon dioxide into aqueous MDEA solution than that of the simplified model. Only in the case of absorption experiments carried out at a low carbon dioxide partial pressure (p < 20 kpa) and low amine concentration (MDEAtotal < 1000 mol/m3), the assumption of pseudo-first order irreversible reaction is reasonable.  相似文献   

8.
A recent study by Eggeman and Chaffin (2005 Eggeman , T. , and Chafin , S. ( 2005 ). Beware of pitfalls of CO2 freezing predictions , Chem. Eng. Prog. , 101 ( 3 ), 3944 . [Google Scholar]), which showed large discrepancies in CO2 freeze-out conditions as predicted by several commercial simulators, prompted a reexamination of using the TBS equation of state for phase equilibrium calculations involving solids. Salim and Trebble (1994 Salim , P. , and Trebble , M. A. ( 1994 ). Modelling of solid phases in thermodynamic calculations via translation of a cubic equation of state at the triple point , Fluid Phase Equilib. , 93 , 7599 .[Crossref] [Google Scholar]) had previously presented a methodology for extending the Trebble-Bishnoi-Salim (TBS) equation of state (Salim, 1990 Salim , P. ( 1990 ). A modified Trebble-Bishnoi equation of state, M.Sc. thesis , University of Calgary . [Google Scholar]) to calculations involving a solid phase. In this study, the CO2 freeze-out conditions in CO2/CH4 and CO2/C2H6 mixtures are calculated from the TBS equation of state, and it is shown that they provide a better data fit than the traditional Poynting correction method. Furthermore, since the use of an equation of state in SLE/SVE calculations does not require the explicit assumption of a pure solid phase, the model was assessed for its ability to correlate CO2 gas hydrate equilibrium conditions. Gas hydrates were simply treated as an impure solid phase, and it was seen that the predictions of gas hydrate equilibrium were in very good agreement with the experimental data. Computationally, the use of the TBS equation of state has the advantage, over the model of Yokozeki (2005 Yokozeki , A. ( 2005 ). Methane gas hydrates viewed through unified solid-liquid-vapour equation of state , Int. J. Thermophys. , 26 ( 3 ), 743765 . [Google Scholar]), that it does not require a modifying factor (cb) in the repulsive term to handle the presence of hydrates; they are instead handled using a unique binary interaction parameter for the hydrate phase.  相似文献   

9.
Application of new solvents will substantially contribute to the reduction of the energy demand for the post combustion capture of CO2 from power plant flue gases. The present work describes tests of such new solvents in a gas-fired pilot plant, which comprises the complete absorption/desorption process (column diameters 0.125 m, absorber/desorber packing height 4.25/2.55 m, packing type: Sulzer BX 500, flue gas flow 30–100 kg/h, CO2 partial pressure 35–135 mbar). Two new solvents CESAR1 (0.28 g/g 2-amino-2-methyl-1-propanol+0.17 g/g piperazine+0.55 g/g H2O) and CESAR2 (0.32 g/g 1, 2-ethanediamine+0.68 g/g H2O), which were developed in an EU-project, were systematically studied and compared to MEA (0.3 g/g monoethanolamine+0.7 g/g H2O). The two new solvents and MEA were studied in the same way in the pilot plant and detailed results are reported for all solvents. In the present study the structured packing Sulzer BX 500 is used. The measurements are carried out at a constant CO2 removal rate of 90% by an adjustment of the regeneration energy in the desorber for systematically varied solvent flow rates. An optimal solvent flow rate leading to a minimum energy requirement is found from these studies. Direct comparisons of such results can be misleading if there are differences in the kinetics of the different solvent systems. The influence of kinetic effects is experimentally studied by varying the flue gas flow rate at a constant ratio of solvent mass flow to flue gas mass flow and constant CO2 removal rate. Results from these studies indicate similar kinetics for CESAR1, CESAR2 and MEA. The direct comparison of the pilot plant results for these solvents is therefore justified. Both CESAR1 and CESAR2 show improvements compared to MEA. The most promising is CESAR1 with a reduction of about 20% in the regeneration energy and 45% in the solvent flow rate.  相似文献   

10.
11.
Mesocellular silica foam (MSU-F) supports were functionalized via wet impregnation with various amine and alcohol compounds for use as high-capacity adsorbents for CO2 separation. The effect of the amino, hydroxyl, and ether functional groups in the impregnating mixture on the CO2 adsorption capacity was investigated. Chemical adsorption was controlled by the composition of the compounds, and the blending effect on the adsorption performance was dependent on the temperature. MSU-F (30 wt.%) impregnated with a mixture of tetraethylenepentamine (40 wt.%) and aminoethylethanolamine (30 wt.%) showed a high adsorption capacity of 5.4 mmol/g at 333 K for 15 kPa CO2.  相似文献   

12.
Two different Ti-containing porous silica thin films having a hexagonal and cubic pore structure were synthesized and used as photocatalysts for the reduction of CO2 with H2O at 323 K. UV irradiation of the Ti-containing porous silica thin films in the presence of CO2 and H2O led to the formation of CH4 and CH3OH with a high quantum yield of 0.28%. These porous silica thin film photocatalysts having a hexagonal pore structure exhibited higher reactivity than the Ti-MCM-41 powder photocatalysts with the same pore structure.  相似文献   

13.
CH4/CO2 reforming over Pt/ZrO2, Pt/CeO2 and Pt/ZrO2 with CeO2 was investigated at 2 MPa. Pt/ZrO2, which shows stable activity under 0.1 MPa, and Pt/CeO2 showed gradual deactivation with time at the high pressure. The deactivation was suppressed drastically on Pt/ZrO2 with CeO2 prepared by different impregnation order (co-impregnation of Pt and CeO2 on ZrO2, and consecutive impregnation of Pt and CeO2 on ZrO2). The amount of coke deposition was found insignificant and similar among all the catalysts (including Pt/ZrO2 and Pt/CeO2). Catalytic activity after the reaction for 24 h was in agreement with Pt particle size after the reaction for same period, indicating that the difference of the catalytic stability is mainly dependent on the extent of Pt aggregation through catalyst preparation, H2 reduction, and the CH4/CO2 reforming. Pt aggregation and the amount of coke deposition were least pronounced on (Pt–Ce)/ZrO2 prepared by impregnation of CeO2 on Pt/ZrO2 and the catalyst showed highest stability.  相似文献   

14.
Application of Optical-fiber Photoreactor for CO2 Photocatalytic Reduction   总被引:1,自引:0,他引:1  
An optical-fiber photoreactor, comprised of 216 catalyst-coated fibers, was designed and assembled to transmit and spread light uniformly inside the reactor. The power loss of light transmission inside an optical fiber was calculated using beam propagation method. The optimum length of optical fiber was estimated to be near 11 cm long in order to entirely spread out light energy over surface catalyst. Vapor-phase CO2 was photocatalytically reduced to methanol using the photoreactor under UV irradiation in a steady-state flow system. The solutions of metal-loaded titania were prepared by thermal hydrolysis method. Metal-loaded TiO2 film was coated on optical fibers by dip-coating method. TiO2, Cu/TiO2 and Ag/TiO2 films were uniformly on the fibers and their thicknesses ranged from 27 to 33 nm. The films consisted of very fine spherical particles with diameters of 10–20 nm. The XRD spectra indicated anatase phase for all films. Methanol yield increased with UV irradiative intensity. Maximum methanol rate was 4.12 μmole/g-cat h using 1.0 wt%-Ag/TiO2 catalyst at 1.13 bar of CO2, 0.03 bar of H2O pressures, and 5,000 s mean residence time under 10 W/cm2 UV irradiation.  相似文献   

15.
ABSTRACT

In this study, electrolyte materials were synthesized by mixing a highly conducting salt (K2CO3) with the poly(vinyl alcohol) (PVA) in different proportions (from 10 to 50 wt.%). The synthesized electrolyte was characterized using Fourier transform infrared (FTIR) spectroscopy, field-emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV) for their functional groups, morphology, thermal stability, glass transition temperature (Tg ), ionic conductivity, and potential window, respectively. Characterization results show that the complex formation between PVA and K2CO3 salt has been established by FTIR spectroscopic study, which indicates the detailed interaction between PVA and the salts in PVA-K2CO3 composites while the amorphous nature of the electrolyte after incorporation of the salts has been confirmed by FESEM analysis. Similarly, TGA and DSC analysis revealed that both decomposition temperature and Tg of the synthesized electrolytes decrease with the addition of K2CO3 due to the strong plasticizing effect of the salt. The results confirm that the electrolytes have sufficient thermal stability for supercapacitor operation, as well as an amorphous phase to effectively deliver high ionic conductivity. The highest ionic conductivity of 4.53 × 10?3 S cm?1 at 373 K and potential window of 2.7 V was exhibited by PK30 (30 wt.% K2CO3), which can be considered as high value for solid-state electrolytes which are superior to those electrolytes from PVA salts earlier reported. The results similarly show that the prepared electrolyte is temperature-dependent as conductivity increase with increase in temperature. Based on these properties, it can be imply that the PVA-K2CO3 gel polymer electrolyte (GPE) could be a promising electrolyte candidate for EDLC applications. The results indicate that the PVA-K2CO3 as a new electrolyte material has great potential in practical applications of portable energy-storage devices.  相似文献   

16.
FTIR spectra are reported of CO2 and CO2/H2 on a silica-supported caesium-doped copper catalyst. Adsorption of CO2 on a “caesium”/silica surface resulted in the formation of CO2 and complexed CO species. Exposure of CO2 to a caesium-doped reduced copper catalyst produced not only these species but also two forms of adsorbed carboxylate giving bands at 1550, 1510, 1365 and 1345 cm−1. Reaction of carboxylate species with hydrogen at 388 K gave formate species on copper and caesium oxide in addition to methoxy groups associated with caesium oxide. Methoxy species were not detected on undoped copper catalyst suggesting that caesium may be a promoter for the methanol synthesis reaction. Methanol decomposition on a caesium-doped copper catalyst produced a small number of formate species on copper and caesium oxide. Methoxy groups on caesium oxide decomposed to CO and H2, and subsequent reaction between CO and adsorbed oxygen resulted in carboxylate formation. Methoxy species located at interfacial sites appeared to exhibit unusual adsorption properties.  相似文献   

17.
Supported K2CO3/Co–MoS2 on activated carbon was prepared by a co-impregnation technique and has been characterized by X-ray diffraction (XRD) and BET. Active ingredients ranged from 39 to 66% and included molysulfide and cobalt sulfide. XRD analysis indicates that cobalt and molybdenum sulfides are found in the Co3S4 and Co9S8 phases. These catalysts were performance tested in a fixed-bed reactor under higher alcohol synthesis conditions, 2000–2400 psig and 270–330°C. Active chemicals on the carbon extrudates decreased the surface area dramatically, as measured by BET. Surprisingly, at the high level of active chemicals, alcohol productivity and selectivity were decreased. An increase in the reaction temperature led to a decrease in the selectivity of methanol and an increase in selectivity of hydrocarbons. Total alcohol productivity was also increased as gas hourly space velocity (GHSV) was increased. Co9S8 may play a role in the catalyst aging process. In prolonged reaction periods (140 h), sulfur is lost from the surface, possibly as H2S. The quantity of Co9S8 on the surface appears to increase as the catalyst ages.  相似文献   

18.
CO2 reaction and formation pathways during Fischer–Tropsch synthesis (FTS) on a co-precipitated Fe–Zn catalyst promoted with Cu and K were studied using a kinetic analysis of reversible reactions and with the addition of 13C-labeled and unlabeled CO2 to synthesis gas. Primary pathways for the removal of adsorbed oxygen formed in CO dissociation steps include reactions with adsorbed hydrogen to form H2O and with adsorbed CO to form CO2. The H2O selectivity for these pathways is much higher than that predicted from WGS reaction equilibrium; therefore readsorption of H2O followed by its subsequent reaction with CO-derived intermediates leads to the net formation of CO2 with increasing reactor residence time. The forward rate of CO2 formation increases with increasing residence time as H2O concentration increases, but the net CO2 formation rate decreases because of the gradual approach to WGS reaction equilibrium. CO2 addition to synthesis gas does not influence CO2 forward rates, but increases the rate of their reverse steps in the manner predicted by kinetic analyses of reversible reactions using non-equilibrium thermodynamic treatments. Thus the addition of CO2 could lead to the minimization of CO2 formation during FTS and to the preferential removal of oxygen as H2O. This, in turn, leads to lower average H2/CO ratios throughout the catalyst bed and to higher olefin content and C5+ selectivity among reaction products. The addition of 13CO2 to H2/12CO reactants did not lead to significant isotopic enrichment in hydrocarbon products, indicating that CO2 is much less reactive than CO in chain initiation and growth. We find no evidence of competitive reactions of CO2 to form hydrocarbons during reactions of H2/CO/CO2 mixtures, except via gas phase and adsorbed CO intermediates, which become kinetically indistinguishable from CO2 as the chemical interconversion of CO and CO2 becomes rapid at WGS reaction equilibrium.  相似文献   

19.
《分离科学与技术》2012,47(3):428-433
The separation of bulk quantities of H2S from CO2 was investigated through a series of pressure-swing adsorption experiments utilizing 4A, 5A, and 13X molecular sieves. High selectivity of H2S over CO2 was encountered for all sieves, particularly for the 13X and 5A. Practically pure CO2 was produced in the adsorption stage with fresh 5A and 13X sieves, at high product recovery rates. Efficient H2S purification was obtained with fresh 5A and regenerated 4A zeolites. The experimental results were in line with theoretical predictions of the literature.  相似文献   

20.
Skeletal Cu-Cr2O3-ZnO catalysts have been prepared by leaching CuAl2 alloy particles at 273 K using 6.1 M aqueous NaOH solutions containing sodium chromate (Na2CrO4) and sodium zincate (Na2Zn(OH)4). The presence of sodium chromate and sodium zincate in the caustic solution was found to affect the pore structure and surface areas of the resulting catalysts. Both BET and Cu surface areas were increased by increasing the concentration of Na2CrO4 and of Na2Zn(OH)4.Increasing the Na2CrO4 level from 0 to 0.06 M in a 6.1M NaOH solution containing 0.2M Na2Zn(OH)4 caused the content of ZnO in the catalyst to decrease from 8.8 to 3.0 wt% whilst increasing the Cr2 O3 content from 0 to 1.7 wt%, indicating that the presence of Na2CrO4 in the leach liquor not only resulted in deposition of a Cr compound but also inhibited precipitation of zinc hydroxide onto skeletal Cu catalysts. On the other hand, increasing the concentration of Na2Zn(OH)4 from 0 to 0.6 M in a 6.1 M NaOH solution containing 0.008 M Na2 CrO4 resulted in increasing the ZnO loading from 0 to 8.9wt% with an almost constant content of Cr2 O3 (1.3 ± 0.2%) in the catalysts, revealing that sodium zincate only led to precipitation of zinc hydroxide and did not suppress Cr2O3 formation.Hydrogenation of CO2 was studied using a gas mixture of 24% CO2 in H2 at a total pressure of 4MPa, space velocities up to 210000L kg-1h-1 and temperatures in the range 493-533K. The catalysts were found to be both highly active and selective for methanol synthesis. This study confirms the role of ZnO in promoting the activity of copper for methanol synthesis from CO2 and improving the selectivity by inhibiting the reverse water-gas shift reaction. The role of Cr2O3 is to improve the structural development of high surface area skeletal copper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号