共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《分离科学与技术》2012,47(13):1955-1967
ABSTRACT In the present work, cobalt(III) acetylacetonate [Co(acac)3] was added to polycarbonate (PC) to improve its performance on pervaporation separation of water/ethanol mixtures. By adding 3 wt% of Co(acac)3 the resulting PC/Co(acac)3 complex membrane possessed a permeation rate similar to a pure polycarbonate membrane, but the separation factor (water/ethanol) was about three times higher. The stability of the complex membrane was tested, and it was found that, after being immersed in an aqueous ethanol solution for 72 hours, the complex membrane was still stable. In addition, the effects of the added amount of Co(acac)3 and the feed composition on pervaporation performance are presented in this work, and the mechanism of the improvement in pervaporation performance is briefly discussed. 相似文献
3.
《分离科学与技术》2012,47(12):1583-1597
Abstract The pervaporation of water/ethanol mixtures through an aromatic polyetherimide membrane was attempted. The membrane was laboratory prepared using the solution casting technique. The sorption characteristics in relation to pervaporation were also studied. It was found that the preferential sorption was altered when the liquid composition was changed, whereas the water component permeated through the membrane preferentially over the whole range of feed mixture compositions. The experimental results were analyzed in terms of sorption ratio and permeation ratio to characterize nonideality of sorption and pervaporation. The effects of some operating parameters, including temperature, feed concentration, and permeate pressure, on the pervaporation performance were also investigated. 相似文献
4.
《分离科学与技术》2012,47(9-10):1063-1077
Abstract The separation of ethanol/water mixtures by pervaporation with a poly (dimethyl siloxane) membrane has been studied. The membrane exhibited ethanol selectivity during all process runs. Investigations focused on the effects of temperature and permeate-side pressure on membrane transport with dilute ethanol feed solutions. An increase in temperature increased the flux exponentially but had little effect on selectivity. As the permeate-side pressure was increased, the flux decreased. Selectivity did not change appreciably over the pressure range evaluated. Studies also analyzed the effect of feed concentration on flux and selectivity. Flux increased and selectivity decreased as the ethanol feed concentration increased. The permeate concentration profile is superior to a standard vapor–liquid equilibrium curve at low ethanol feed concentrations. 相似文献
5.
Inorganic membranes have many advantages for dehydration of azeotropic mixtures of ethanol and water for renewable fuel purposes. In this work, we developed an inorganic membrane from γ-alumina and tested it for its ability to selectively permeate water over ethanol. Ethanol adsorbed both chemically and physically on the surface of γ-alumina, blocking the 47 Å pores sufficiently to enhance water selectivity. Stable flux was observed over 6 h, but after 4–5 h of continuous testing, water selectivity rose above 200 due to this blocking phenomenon. 相似文献
6.
《分离科学与技术》2012,47(16):2298-2307
Polyvinyl alcohol (PVOH) has been chemically modified by polymerizing hydroxyethylmethacrylate (HEMA) in aqueous solution of PVOH and finally crosslinking PVOH with glutaraldehyde to produce a semi-interpenetrating network (SIPN) membrane. Accordingly, three such SIPN membranes, namely SIPNI, SIPNII, and SIPNIII were synthesized with different weight ratio of PVOH: HEMA i.e., 1:0.25 (SIPNI), 1:0.50 (SIPNII), and 1:0.75 (SIPNIII). These SIPN membranes were used for pervaporative separation of methanol from its mixtures with toluene. The flux and methanol selectivity of these SIPN membranes were found to be much higher than conventional PVOH membrane crosslinked with glutaraldehyde. Among the three membranes, SIPNIII with 75 wt% HEMA incorporation shows optimum performance in terms of flux and methanol selectivity. The permeability of the membranes was also found to increase with increase in HEMA content in PVOH matrix. The novelty of the work lies in synthesis and characterization of a new kind of membrane and its potential for selective removal of methanol from its mixtures with toluene. 相似文献
7.
《分离科学与技术》2012,47(14):1915-1923
Abstract The separation of water/ethanol vapor mixtures through chitosan membranes and crosslinked chitosan membranes was studied by means of the vapor permeation technique. The permeation performance was discussed in terms of separation factor and permeation flux. Crosslinking the chitosan membrane by glutaraldehyde enhanced the selectivity. The highest separation factor obtained was 6000 for a crosslinked chitosan membrane with a degree of deacetylation of 100%. 相似文献
8.
《分离科学与技术》2012,47(11):1699-1708
Hydroxy terminated polybutadiene (HTPB)-based polyurethaneurea membranes with and without cross-linkage were synthesized and first used as membrane material to separate p-/o-xylene mixtures by pervaporation. Compared with HTPB-PU (without cross-linkage) membranes, HTPB-DVB-PU (cross-linked HTPB-PU with divinyl benzene) membranes demonstrated a lower degree of swelling in xylene isomer solutions and noticeable improved separation factor of p-/o-xylene. On the other hand, the amount of p-xylene adsorbed in HTPB-DVB-PU membranes increased significantly rather than that of o-xylene. While the separation factor of p-/o-xylene increased but the total flux decreased with increasing DVB content, which can be ascribed to the improved chemical structure and more homogeneous chain structures of the HTPB-DVB-PU membranes. The p-xylene normalized permeation rate and separation factor of p-/o-xylene of HTPB-DVB-PU membrane reached 2.70 kgµm/m2h and 2.23, respectively, at a feed concentration of 10 wt% p-xylene at 30°C. 相似文献
9.
Sorption and pervaporation of benzene/cyclohexane mixtures were studied by using poly(vinyl chloride) (PVC) polymer. The effects of composition of benzene/cyclohexane mixture and temperature on sorption and pervaporation characteristics were determined at 30, 40, and 50 °C for the membranes containing 8 wt% PVC polymer. Liquid feed composition effects on the flux and the selectivity were determined for two different membranes at 30 °C. The membranes that were prepared from the solutions containing 4 wt% and 8 wt% PVC polymer have thicknesses of 30 μm and 50 μm, respectively. Membrane thickness changes with polymer content as expected. Total sorption increased with increasing concentration of benzene. Increasing the concentration of benzene resulted in increasing flux as well as decreasing selectivity also. Fluxes were increased and selectivity decreased with increasing temperature. The selectivity was not affected significantly with varying amounts of polymer in the casting solution but the flux decreased with increasing amount of polymer in the casting solution. 相似文献
10.
11.
《分离科学与技术》2012,47(10):1354-1362
Pervaporative separation of acetone from water at a concentration range of 0–100 wt% were studied using sodium alginate (NaAlg)/Poly vinyl pyrrolidone (PVP) membranes. Membranes were prepared in different ratios (w/w) (100/0, 95/5, 90/10, 85/15, 80/20, 75/25) of NaAlg/PVP by crosslinking with CaCl2. Experimental studies were carried out to investigate the effects of the operating temperature, feed composition, and membrane thickness on the pervaporation performance. The optimum operating temperature, membrane thickness, NaAlg/PVP ratio, and feed composition were determined as 40°C, 70 µm, 75/25 (w/w), and 20 wt% acetone, respectively. The effect of PVP content in the membranes was investigated on pervaporation performance. The permeation rate was increased with increasing the PVP content; however, there was no appreciable change about the separation factor. The permeation rate and separation factor values were found to be in the range of 0.304–1.023 kg/m2 h and 16–57, respectively. In addition, the sorption-diffusion properties of the alginate membranes were investigated at the operating temperature and the feed composition. It was found that the sorption selectivity was the dominant factor for the separation of acetone/water mixtures. 相似文献
12.
《分离科学与技术》2012,47(11):2483-2499
Abstract The selective removal of water from ethanol through pervaporation was demonstrated in a microchannel device using a commercial membrane. Photolithography and dry etching techniques were employed for fabrication of the microseparator with hydraulic diameters of 30 µm to 80 µm. Experiments conducted at 90°C and 2–3 Torr, with Reynolds Numbers ranging from 8 to 91, resulted in an average water and ethanol permeance of 1.2×10?3 and 8×10?5 cm3/cm2 · s · cmHg respectively. A mass transfer analysis involving Sherwood correlations was used to calculate the theoretical boundary layer resistance. The comparison of overall mass transfer coefficient with the boundary layer coefficients suggests that the membrane was the dominant resistance for this system. 相似文献
13.
Poly(vinyl alcohol)/polyacrylonitrile blend membranes were prepared to separate pyridine/water mixtures by pervaporation. The membranes were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The effects of membrane composition, feed pyridine concentration, operating temperature, downstream pressure and ultrasound irradiation on the separation process were evaluated. The experimental results indicated that with increasing PVA mass ratio and operating temperature the permeate flux increased but the separation factor decreased, while with increasing feed concentration and downstream pressure the separation factor increased and the permeate flux decreased. It was observed that Ultrasound irradiation enhanced the permeate flux. 相似文献
14.
《分离科学与技术》2012,47(4):523-536
The ability of homogeneous and mixed matrix membranes prepared using standard silicone rubber, poly(dimethylsiloxane) (PDMS), and fluorosilicone rubber, poly(trifluoropropylmethylsiloxane) (PTFPMS), to dehydrate ethanol by pervaporation was evaluated. Although PDMS is generally considered to be the benchmark hydrophobic membrane material in pervaporation, water/ethanol molar permselectivity of a pure PDMS membrane was found to be 0.89 for a feed containing 80/20 w/w ethanol/water at 50°C, indicating a slight selectivity for water. Fluorinated groups in PTFPMS improved the water-ethanol permselectivity to 1.85, but decreased the water permeability from 9.7 × 10?12 kmol · m/m2 · s · kPa in PDMS to 5.1 × 10?12 kmol · m/m2 · s · kPa (29,000 and 15,200 Barrer, respectively). These water permeabilities are attractive, particularly since the rubbery materials should not experience the steep declines in water permeability observed with most standard dehydration membranes as water concentration in the feed decreases. However, the water selectivity is lower than desired for most applications. Particles of hydrophilic zeolite 4A were loaded into both PDMS and PTFPMS matrices in an effort to boost water selectivity and further improve water permeability. Water-ethanol permselectivities as high as 11.5 and water permeabilities as high as 23.2 × 10?12 kmol · m/m2 · s · kPa were observed for the PTFPMS/zeolite 4A mixed matrix membranes?6 times higher than for the unfilled PTFPMS membrane. 相似文献
15.
《分离科学与技术》2012,47(4):627-646
Abstract In this study permeation and separation characteristics of dimethylformamide (DMF)/water mixtures were investigated by pervaporation (PV), vapor permeation (VP), and vapor permeation with temperature difference (TDVP) methods using alginate membranes crosslinked with calcium chloride. The effects of membrane thickness (30–90 µm), feed composition (0–100 wt%), operating temperature (30–50°C) on the permeation rates and separation factors were investigated. The permeation rate was found to be inversely proportional to the membrane thickness whereas separation factor increased as the membrane thickness was increased. It was observed that the permeation rates in VP and TDVP were lower than in PV however the highest separation factors were obtained with TDVP method. Alginate membranes gave permeation rates of 0.97–1.2 kg/m2 h and separation factors of 17–63 depending on the operation conditions and the method. In addition, sorption‐diffusion properties of the alginate membranes were investigated at the operating temperature and the feed composition. It was found that the sorption selectivity was dominant factor for the separating of DMF/water mixtures. 相似文献
16.
Lakshmi Unnikrishnan Smita Mohanty Gautam Sarkhel 《Polymer-Plastics Technology and Engineering》2013,52(14):1419-1427
Polyethersulfone (PES) was sulfonated using chlorosulfonic acid in order to improve proton conductivity. Incorporation of ?SO3H groups into polymer main chain through sulfonation was confirmed using FTIR and 1H NMR. Ion exchange capacity of sulfonated membranes was determined via titration. Morphological studies (AFM, SEM) revealed the presence of hydrophilic proton transfer channels, which became continuous at higher degrees of sulfonation. Thermal stability was observed from thermogravimetric analysis (TGA). Storage modulus and tan δ also exhibited an increase with degree of sulfonation as determined from DMA. Conductivity measurements and fuel cell performance showed that sulfonated samples possessed higher conductivity than virgin PES. 相似文献
17.
In this study, the pervaporation behaviour of azeotrope-forming methanol-carbontetrachloride binary mixture at different compositions was investigated at 30°C and 45°C through LDPE membranes with two different melt flow indices for two different thicknesses. Experimental fluxes and selectivities for methanol and carbontetrachloride were determined. Theoretical calculations for fluxes based on a solution-diffusion model as developed by Yeom and Huang using Fujita′s free volume approach and Flory-Huggins thermodynamics showed deviations from the experimental results. Experimental fluxes were decomposed into sorption and diffusion terms to discuss the effects of experimental conditions. 相似文献
18.
Guanglu Han Zhe Chen Lifang Cai Yonghui Zhang Junfeng Tian Huanhuan Ma Shaoming Fang 《化学工程与技术》2020,43(3):574-581
Carboxyl graphene (CG) with two functions of hybridization and crosslinking was incorporated into poly(vinyl alcohol) (PVA) matrix to form PVA/CG mixed-matrix membranes (MMMs). The membranes demonstrated excellent mechanical properties and thermal stability. The improved hydrophilicity and formed crosslinking structure led to moderate swelling. The membrane crystallinity decreased and the free volume was promoted with increasing CG loading amount. The pervaporation (PV) separation performance for ethanol dehydration indicated that both permeation flux and separation factor were enhanced simultaneously at the optimum CG loading. Subsequently, the permeation flux continued to increase while the separation factor declined at higher CG loadings. 相似文献
19.
《分离科学与技术》2012,47(16):3876-3887
Abstract In this work, polyethersulfone (PES) asymmetric nanofiltration (NF) membranes were prepared by immersion precipitation phase inversion process. The casting solution contained N-methyl-2-pyrrolidone (NMP) as solvent, 1-propanol and 2-propanol as nonsolvent additives, and polyvinylpyrrolidone (PVP) as pore former additive. Water was used as a coagulant. The effects of the PVP content in the casting solution and the exposed time on the performances of the NF membranes were investigated. It was found that with the increase of PVP content, the pure water flux (PWF) increased to the largest value and then decreased. The rejection to PEG 1000 always decreased. The largest value (1281.40 kg · m?2 · h?1 · MPa?1) of PWF appeared when the content of 1-propanol was 9 wt.%. However, when 2-propanol was added in the casting solution, the largest value of PWF was only 678.37 kg · m?2 · h?1 · MPa?1 (the content of 2-propanol was 7 wt.% and other preparing conditions were unchanged). The results meant that both PWF and rejection of the membranes with 1-propanol as additive were higher than that of 2-propanol as additive. The possible reason was discussed from the viewpoint of the difference of solubility of propanols to PES and PVP. 相似文献
20.
制备了以聚乙烯醇(PVA)与正硅酸乙酯(TEOS)交联膜为活性层,以超滤平板膜PAN为底膜的PVA-TEOS/PAN复合膜,并用于己内酰胺脱水.FT-IR和XRD谱图证实复合膜活性层中PVA与TEOS发生交联反应,形成了Si-O-C共价键,膜结晶度降低.用SEM和TGA分别对膜的形貌和热稳定性进行表征.考察了交联剂(T... 相似文献