共查询到20条相似文献,搜索用时 13 毫秒
1.
《分离科学与技术》2012,47(16):2320-2330
In this research, continuous SAPO-34 membranes were synthesized via secondary growth method onto both α-Al2O3 and mullite supports at three levels of synthesis temperature: 185, 195, and 220°C for 24 h. The synthesized membranes were characterized using XRD and SEM analysis and single gas permeation experiments. It was found out that support material and synthesis temperature both have significant effects on the membrane performance. At higher synthesis temperature, SAPO-34 crystals grown over the mullite support become more uniform and smaller in size but those grown on the α-Al2O3 support become larger. Effect of synthesis temperature on single gas permeation properties of the synthesized SAPO-34 membranes was also studied. For the mullite supported membranes, the CH4 and CO2 permeances decrease as synthesis temperature increases; but in the case of the alumina supported membranes, by increasing synthesis temperature, CH4 and CO2 permeances first decrease up to 195°C and then increase up to 220°C. Even in equal membrane thicknesses, the mullite supported membrane shows lower gas permenaces. Increasing synthesis temperature decreases CO2/CH4 ideal selectivity for the α-Al2O3 supported membranes, while increases for the mullite supported membranes. Under optimum synthesis conditions, at room temperature and 2 bar feed pressure, the CO2 permeance through the α-Al2O3 and the mullite supported SAPO-34 membranes are 8.2 × 10?7 and 8.5 × 10?8 (mol/m2 · s · Pa), respectively, and CO2/CH4 ideal selectivities are 51 and 61, respectively. 相似文献
2.
Synthesis,kinetic study,and reaction mechanism of Li4SiO4 with CO2 in a slurry bubble column reactor
AbstractThis study was performed to investigate the synthesis, kinetic and reaction mechanism of Li4SiO4 with CO2 in a slurry bubble column reactor. The Li4SiO4 powder sample was prepared via a solid-state reaction. The sample was characterized via X-ray diffraction (XRD) analysis and verified as a single phase. The median diameter of the sample was measured using the laser diffraction and scattering method as about 20?μm. The synthesized sample was suspended in binary molten carbonate of Li2CO3–K2CO3 having a molar ratio of 38:62. The experimental results show that Li4SiO4 in the slurry bubble column absorbed approximately a stoichiometric amount of CO2. The kinetic study shows that the CO2 reaction behavior on the Li4SiO4 surface was fitted to a double exponential model and the limiting step of the reaction was lithium diffusion. The mass transfer coefficient of CO2 and rate constant of reaction with Li4SiO4 were studied to understand the overall absorption mechanism in the reactor. The resistance for the direct reaction of CO2 on the Li4SiO4 was much smaller than the resistance for the mass transfer of CO2 to the Li4SiO4. We can conclude that the direct contact of CO2 with Li4SiO4 was the main path for the reaction. 相似文献
3.
Or-Ampai Jaiboon Benjapon Chalermsinsuwan Lursuang Mekasut 《Chemical Engineering Communications》2013,200(3):361-365
The effect of the regeneration temperature (150°, 250°, and 350°C) during multiple CO2 cyclic sorption-regeneration cycles of a K2CO3/Al2O3 solid sorbent in a bubbling fluidized bed reactor was evaluated in terms of the CO2 capture capacity and chemical composition of the solid sorbent. The CO2 capture capacity after regeneration at 150° and 250°C decreased with increasing cycle numbers, reaching approximately 57 and 78%, respectively, and 19.0 and 39.3%, respectively, of the original capacity after one and five regeneration cycles. This decline in the CO2 capture capacity was due to the accumulation of KHCO3 (at 150°C) and KAl(CO3)2(OH)2 (150° and 250°C) from their incomplete degradation back to the K2CO3/Al2O3 solid sorbent. When regenerated at 350°C, the CO2 capture capacity remained essentially constant in each cycle number because of complete desorption (no residual KHCO3 and KAl(CO3)2(OH)2). The formation mechanism of complex structure occurred similar to the one in a fixed bed reactor/thermogravimetric analyzer with lower regeneration temperature. The general operation conditions for K2CO3/Al2O3 solid sorbents are summarized. 相似文献
4.
《分离科学与技术》2012,47(11-12):3036-3055
Abstract This study focused on the synthesis of stable nanofluids and their direct application to the CO2 absorption process. A sol-gel process was used as the synthesis method of nanoparticles in nanofluid. The particle size and stability were determined by SEM image and zeta potential of the nanofluid. Three types of nanofluids containing approximately 30 nm, 70 nm, and 120 nm particles were synthesized and all nanofluids had a stable zeta potential of approximately ? 45 mV. Addition of nanoparticles increased the average absorption rate of 76% during the first 1 minute and total absorption amount of 24% in water. The capacity coefficient of CO2 absorption in the nanofluid is 4 times higher than water without nanoparticles, because the small bubble sizes in the nanofluid have large mass transfer areas and high solubility. 相似文献
5.
Effects of Elevated CO2 and Temperature on Methane Production and Emission from Submerged Soil Microcosm 总被引:1,自引:0,他引:1
Incubation experiments were conducted under controlled laboratory conditions to study the interactive effects of elevated carbon dioxide (CO2) and temperature on the production and emission of methane (CH4) from a submerged rice soil microcosm. Soil samples (unamended soil; soil + straw; soil + straw + N fertilizer) were placed in four growth chambers specifically designed for a combination of two levels of temperature (25 °C or 35 °C) and two levels of CO2 concentration (400 or 800 mol mol–1) with light intensity of about 3000 Lx for 16 h d–1. At 7, 15, 30, and 45 d after incubation, CH4 flux, CH4 dissolved in floodwater, subsurface soil-entrapped CH4, and CH4 production potential of the subsurface soil were determined. The results are summarized as follows: 1) The amendment with rice straw led to a severalfold increase in CH4 emission rates, especially at 35 °C. However, the CH4 flux tended to decrease considerably after 15 d of incubation under elevated CO2. 2) The amount of entrapped CH4 in subsurface soil and the CH4 production potential of the subsurface soil were appreciably larger in the soil samples incubated under elevated CO2 and temperature during the early incubation period. However, after 15 d, they were similar in the soil samples incubated under elevated or ambient CO2 levels. These results clearly indicated that elevated CO2 and temperature accelerated CH4 formation by the addition of rice straw, while elevated CO2 reduced CH4 emission at both temperatures. 相似文献
6.
Liang Xu Tianyang Lei Boyu Jing Fengjuan Miao Toshiki Aoki 《Designed Monomers and Polymers》2018,21(1):99-104
Three soluble hyperbranched polyazomethines containing oligosiloxane end group HBP-PAZ-SiOn were successfully synthesized. HBP-PAZ-SiOns were used as modifiers of ethyl cellulose (EC) and polysulfone (PS) membranes. Blend membranes, HBP-PAZ-SiOn/EC and HBP-PAZ-SiOn/PS were prepared by blending the THF solution of HBP-PAZ-SiOn with ethanol solution of EC and dichloromethane solution of PS, respectively. Surprisingly, the permeabilities for CO2 of the blend membranes were more than 15–16 times higher than those of pure EC and PS membranes without any drop of pemselectivity to N2. This unusual improvement has been achieved by both enhancement of diffusivity for carbon dioxide and nitrogen by the oligosiloxane groups and enhancement of affinity of the amino groups with carbon dioxide at the end groups of HBP-PAZ-SiOn. 相似文献
7.
A recent study by Eggeman and Chaffin (2005), which showed large discrepancies in CO2 freeze-out conditions as predicted by several commercial simulators, prompted a reexamination of using the TBS equation of state for phase equilibrium calculations involving solids. Salim and Trebble (1994) had previously presented a methodology for extending the Trebble-Bishnoi-Salim (TBS) equation of state (Salim, 1990) to calculations involving a solid phase. In this study, the CO2 freeze-out conditions in CO2/CH4 and CO2/C2H6 mixtures are calculated from the TBS equation of state, and it is shown that they provide a better data fit than the traditional Poynting correction method. Furthermore, since the use of an equation of state in SLE/SVE calculations does not require the explicit assumption of a pure solid phase, the model was assessed for its ability to correlate CO2 gas hydrate equilibrium conditions. Gas hydrates were simply treated as an impure solid phase, and it was seen that the predictions of gas hydrate equilibrium were in very good agreement with the experimental data. Computationally, the use of the TBS equation of state has the advantage, over the model of Yokozeki (2005), that it does not require a modifying factor (cb) in the repulsive term to handle the presence of hydrates; they are instead handled using a unique binary interaction parameter for the hydrate phase. 相似文献
8.
9.
K. J. Williams A. B. Boffa M. Salmeron A. T. Bell G. A. Somorjai 《Catalysis Letters》1991,9(5-6):415-426
Submonolayer deposits of titania on a Rh foil have been found to increase the rate of CO2 hydrogenation. The primary product, methane, exhibits a maximum rate at a TiO
x
coverage of 0.5 ML which is a factor of 15 higher than that over the clean Rh surface. The rate of ethane formation displays a maximum which is 70 times that over the unpromoted Rh foil; however, the selectivity for methane remains in excess of 99%. The apparent activation energy for methane formation and the dependence of the rate on H2 and CO2 partial pressure have been determined both for the bare Rh surface and the titania-promoted surface. These rate parameters show very small variations as titania is added to the Rh catalyst. The methanation of CO2 is proposed to start with the dissociation of CO2 into CO(a) and O(a), and then proceed through steps which are identical to those for the hydrogenation of CO. The increase in the rate of CO2 hydrogenation in the presence of titania is attributed to an interaction between the adsorbed CO, released by CO2 dissociation, and Ti3+ ions located at the edge of TiO
x
islands covering the surface. Differences in the effects of titania promotion on the methanation of CO2 and CO are discussed in terms of the mechanisms that have been proposed for these two reactions. 相似文献
10.
Daniel Rui Chen Megha Chitranshi Vesselin Shanov Mark Schulz 《International journal of molecular sciences》2022,23(20)
High demand for electrochemical storage devices is increasing the need for high-performance batteries. A Zn-CO2 battery offers a promising solution for CO2 reduction as well as energy storage applications. For this study, a Zn-CO2 battery was fabricated using a Carbon Nanotube (CNT) sheet as a cathode and a Zn plate as an anode. The electrochemical activation technique was used to increase the surface area of the CNT electrode by roughly 4.5 times. Copper (Cu) as a catalyst was then deposited onto the activated CNT electrode using electrodeposition method and different Cu loadings were investigated to optimize CO2 reduction. The final assembled Zn-CO2 battery has a 1.6 V output voltage at a current density of 0.063 mA/cm2, which is higher than most devices reported in the literature. This study demonstrates the importance of activation process which enabled more catalyst loading on the cathode resulted in additional active sites for electroreduction process. This paper presents the activated CNT sheet as a promising cathode material for Zn-CO2 batteries. 相似文献
11.
Hydrogenation of CO2 was studied on 1% Rh/TiO2 reduced at different temperatures. The interaction of CO2 with the catalyst and that of the CO2+H2 mixture was also studied. FTIR and TPD measurements revealed that CO2 dissociation depends on the reduction temperature of the catalyst. In the surface reaction, besides Rh carbonyl hydride, formate groups and different carbonates and surface formyl species were also formed. The surface concentration of the formyl group depended on the reduction temperature. The initial rate of CO2 hydrogenation significantly increased with increasing reduction temperature but after some time it drastically decreased. The promotion effect of the reduction temperature was explained by the formation of oxygen vacancies on the perimeter of the Rh/TiO2 interface, which can be re-oxidized by the adsorption of CO2 and H2O. 相似文献
12.
《分离科学与技术》2012,47(4):766-777
Abstract Aqueous ammonia was investigated as a new absorbent of the chemical absorption process for CO2 capture from combustion flue gas. The effects of the temperature and concentration of aqueous ammonia on CO2 absorption in a semi‐batch reactor were studied by interpreting breakthrough curves. Raman spectroscopy analysis of CO2 loaded aqueous ammonia provided concentration changes of bicarbonate, carbonate, and carbamate as well as CO2 sorption capacity at given time during the absorption with 13 wt% aqueous ammonia at 25°C. It was observed that carbamate formation was dominating at the early stage of absorption. Then, the bicarbonate formation took over the domination at the later stage while the carbonate remained unchanged. 相似文献
13.
《分离科学与技术》2012,47(3):485-500
Abstract A novel adsorption cycle is examined experimentally and theoretically for recovering carbon dioxide from a 50 mol% mixture with carbon monoxide. Several adsorbents are considered, and zeolite NaY is chosen for the process due to its high capacity and selectivity for CO2 in the presence of CO. The process consists of three steps. The bed is fed the gas mixture at 273 K until CO2 breakthrough occurs. The bed then undergoes countercurrent blowdown of CO2 while heating at 391 K and is finally cooled to the initial feed temperature once the bed has been depleted of CO2. Results are presented from laboratory scale experiments and are described using numerical simulations. This novel cycle provides a method for capturing and producing CO2 without the need for a purge gas and has low energy requirements if waste heat is available. 相似文献
14.
Supported K2CO3/Co–MoS2 on activated carbon was prepared by a co-impregnation technique and has been characterized by X-ray diffraction (XRD) and BET. Active ingredients ranged from 39 to 66% and included molysulfide and cobalt sulfide. XRD analysis indicates that cobalt and molybdenum sulfides are found in the Co3S4 and Co9S8 phases. These catalysts were performance tested in a fixed-bed reactor under higher alcohol synthesis conditions, 2000–2400 psig and 270–330°C. Active chemicals on the carbon extrudates decreased the surface area dramatically, as measured by BET. Surprisingly, at the high level of active chemicals, alcohol productivity and selectivity were decreased. An increase in the reaction temperature led to a decrease in the selectivity of methanol and an increase in selectivity of hydrocarbons. Total alcohol productivity was also increased as gas hourly space velocity (GHSV) was increased. Co9S8 may play a role in the catalyst aging process. In prolonged reaction periods (140 h), sulfur is lost from the surface, possibly as H2S. The quantity of Co9S8 on the surface appears to increase as the catalyst ages. 相似文献
15.
FTIR spectra are reported of CO2 and CO2/H2 on a silica-supported caesium-doped copper catalyst. Adsorption of CO2 on a “caesium”/silica surface resulted in the formation of CO2
− and complexed CO species. Exposure of CO2 to a caesium-doped reduced copper catalyst produced not only these species but also two forms of adsorbed carboxylate giving
bands at 1550, 1510, 1365 and 1345 cm−1. Reaction of carboxylate species with hydrogen at 388 K gave formate species on copper and caesium oxide in addition to methoxy
groups associated with caesium oxide. Methoxy species were not detected on undoped copper catalyst suggesting that caesium
may be a promoter for the methanol synthesis reaction. Methanol decomposition on a caesium-doped copper catalyst produced
a small number of formate species on copper and caesium oxide. Methoxy groups on caesium oxide decomposed to CO and H2, and subsequent reaction between CO and adsorbed oxygen resulted in carboxylate formation. Methoxy species located at interfacial
sites appeared to exhibit unusual adsorption properties. 相似文献
16.
20%SrO-20%La2O3/CaO catalyst (SLC-2), prepared by impregnation, has shown 18% CH4 conversion and 80% C2-selectivity for the oxidative coupling of methane (OCM) at 1073–1103 K with CH4O2 molar ratio=91 and total flow rate of 100 ml/min. Addition of SrO onto La2O3/CaO (LC) catalyst strengthens the surface basicity and leads to an increase in CH4 conversion and C2-selectivity. Meanwhile, the reaction temperature required to obtain the highest C2-yield increases with increasing SrO content. The formation of carbonate on the catalyst surface is the main reason for the deactivation of LC and SLC catalysts. If the amount of CO2 added into the feed is appropriate and the reaction temperature is high enough, there is no deactivation at all. In such case, the added CO2 will suppress the formation of CO2 produced via the OCM reaction, therefore, improves the C2-selectivity. The FT-IR spectra of CO2 adspecies recorded at different temperatures show that CO2 interacts easily with the catalyst surface to form different carbonate adspecies. Unidentate carbonate is the main CO2 adspecies formed on the catalyst surface. On the LC catalyst surface, the unidentate carbonate was first formed on Ca2+ cations at room temperature. If the temperature is higher than 473 K, it will form on La3+ cations. On the SLC catalyst surface, if the temperature is lower than 573 K, only the unidentate carbonate formed on Ca2+ cations could be observed. When the temperature is higher than 673 K, it will then form on Sr2+ cations. This suggests that the unidentate carbonate can migrate on the LC and SLC catalyst surface on one hand, and on the other hand, that the surface composition of SLC catalysts is dynamic in nature. On the basis of both the decomposition temperatures of the carbonate species, and the temperature dependence of the value which is the difference of symmetric and asymmetric stretching frequencies of surface carbonates, the in situ FT-IR technique offered two approaches to measure the surface basicity of the SLC catalyst. The results thus obtained are in good agreement with that of CO2-TPD. The role of the surface basicity of the SLC catalyst is also discussed. 相似文献
17.
CO2 reaction and formation pathways during Fischer–Tropsch synthesis (FTS) on a co-precipitated Fe–Zn catalyst promoted with Cu and K were studied using a kinetic analysis of reversible reactions and with the addition of 13C-labeled and unlabeled CO2 to synthesis gas. Primary pathways for the removal of adsorbed oxygen formed in CO dissociation steps include reactions with adsorbed hydrogen to form H2O and with adsorbed CO to form CO2. The H2O selectivity for these pathways is much higher than that predicted from WGS reaction equilibrium; therefore readsorption of H2O followed by its subsequent reaction with CO-derived intermediates leads to the net formation of CO2 with increasing reactor residence time. The forward rate of CO2 formation increases with increasing residence time as H2O concentration increases, but the net CO2 formation rate decreases because of the gradual approach to WGS reaction equilibrium. CO2 addition to synthesis gas does not influence CO2 forward rates, but increases the rate of their reverse steps in the manner predicted by kinetic analyses of reversible reactions using non-equilibrium thermodynamic treatments. Thus the addition of CO2 could lead to the minimization of CO2 formation during FTS and to the preferential removal of oxygen as H2O. This, in turn, leads to lower average H2/CO ratios throughout the catalyst bed and to higher olefin content and C5+ selectivity among reaction products. The addition of 13CO2 to H2/12CO reactants did not lead to significant isotopic enrichment in hydrocarbon products, indicating that CO2 is much less reactive than CO in chain initiation and growth. We find no evidence of competitive reactions of CO2 to form hydrocarbons during reactions of H2/CO/CO2 mixtures, except via gas phase and adsorbed CO intermediates, which become kinetically indistinguishable from CO2 as the chemical interconversion of CO and CO2 becomes rapid at WGS reaction equilibrium. 相似文献
18.
19.
Ki-Don Sung Jin-Suk Lee Chul-Seung Shin Soon-Chul Park 《Korean Journal of Chemical Engineering》1998,15(4):449-450
A fresh water microalga, which has tolerance to high concentrations of CO2, was isolated. The KR-1 strain was identified as a genusChlorella. ThoughChlorella KR-1 showed maximum growth at 10 % (v/v) CO2, the strain showed a good growth rate up to 50 % (v/v) CO2. The results indicated the feasibility of the KR-1 strain for massive cultivation using condensed stack gases. 相似文献
20.
Methanol Synthesis from CO2 Using Skeletal Copper Catalysts Containing Co-precipitated Cr2O3 and ZnO
Skeletal Cu-Cr2O3-ZnO catalysts have been prepared by leaching CuAl2 alloy particles at 273 K using 6.1 M aqueous NaOH solutions containing sodium chromate (Na2CrO4) and sodium zincate (Na2Zn(OH)4). The presence of sodium chromate and sodium zincate in the caustic solution was found to affect the pore structure and surface areas of the resulting catalysts. Both BET and Cu surface areas were increased by increasing the concentration of Na2CrO4 and of Na2Zn(OH)4.Increasing the Na2CrO4 level from 0 to 0.06 M in a 6.1M NaOH solution containing 0.2M Na2Zn(OH)4 caused the content of ZnO in the catalyst to decrease from 8.8 to 3.0 wt% whilst increasing the Cr2 O3 content from 0 to 1.7 wt%, indicating that the presence of Na2CrO4 in the leach liquor not only resulted in deposition of a Cr compound but also inhibited precipitation of zinc hydroxide onto skeletal Cu catalysts. On the other hand, increasing the concentration of Na2Zn(OH)4 from 0 to 0.6 M in a 6.1 M NaOH solution containing 0.008 M Na2 CrO4 resulted in increasing the ZnO loading from 0 to 8.9wt% with an almost constant content of Cr2 O3 (1.3 ± 0.2%) in the catalysts, revealing that sodium zincate only led to precipitation of zinc hydroxide and did not suppress Cr2O3 formation.Hydrogenation of CO2 was studied using a gas mixture of 24% CO2 in H2 at a total pressure of 4MPa, space velocities up to 210000L kg-1h-1 and temperatures in the range 493-533K. The catalysts were found to be both highly active and selective for methanol synthesis. This study confirms the role of ZnO in promoting the activity of copper for methanol synthesis from CO2 and improving the selectivity by inhibiting the reverse water-gas shift reaction. The role of Cr2O3 is to improve the structural development of high surface area skeletal copper. 相似文献