首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《分离科学与技术》2012,47(3):579-590
Abstract

Adsorption gel was prepared from waste recycled paper by immobilizing iminodiacetic acid (IDA) functional group by chemical modification. The gel exhibited good adsorption behavior for a number of metal ions viz. Cu(II), Pb(II), Fe(III), Ni(II), Cd(II), and Co(II) at acidic pH. The order of selectivity was found to be as follows: Cu(II)>Pb(II)>Fe(III)>Ni(II)~Cd(II)~Co(II). From the adsorption isotherms, the maximum adsorption capacity of the gel for both Cu(II) and Pb(II) was found to be 0.47 mol/kg whereas that for Cd(II) was 0.24 mol/kg. A continuous flow experiment for Cd(II) showed that the gel can be useful for pre‐concentration and complete removal of Cd(II) from aqueous solution.  相似文献   

2.
In this study, a fibrous adsorbent containing amidoxime groups was prepared by graft copolymerization of acrylonitrile (AN) onto poly(ethylene terephthalate) (PET) fibers using benzoyl peroxide (Bz2O2) as initiator in aqueous solution, and subsequent chemical modification of cyano groups by reaction with hydroxylamine hydrochloride in methanol. The grafted and modified fibers were characterized by FTIR, TGA, SEM, and XRD analysis. The crystallinity increased, but thermal stability decreased with grafting and amidoximation. The removal of Cu(II), Ni(II), Co(II), Pb(II), and Cd(II) ions from aqueous solution onto chelating fibers were studied using batch adsorption method. These properties were investigated under competitive conditions. The effects of the pH, contact time, and initial ion concentration on the removal percentage of ions were studied. The results show that the adsorption rate of metal ions followed the given order Co(II) > Pb(II) > Cd(II) > Ni(II) > Cu(II). The percentage removal of ions increased with initial ion concentration, shaking time, and pH of the medium. Total metal ion removal capacity was 49.75 mg/g fiber on amidoximated fiber. It was observed that amidoximated fibers can be regenerated by acid without losing their activity, and it is more selective for Pb(II) ions in the mixed solution of Pb‐Cu‐Ni–Co‐Cd at pH 4. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
1,4,8,11‐Tetraazacyclotetradecane (cyclam) was reacted with acryloyl chloride in a 1 : 2 molar ratio in dichloromethane in the presence of pyridine at 0°C. The modified cyclam was polymerized by adding an azobisisobutyronitrile initiator and irradiated with a UV lamp under reflux for 6 h. Precipitated cyclam containing polymer in the bulk structure was removed from the suspension by filtration. After washing and drying the final polymeric materials were used for transition metal ion adsorption and desorption studies. A Fourier transform IR spectrophotometer and thermogravimetric analyzer were used to characterize the polymeric structure. The affinity of the polymeric material for transition metal ions was used to test the adsorption–desorption of selected ions [Cu(II), Ni(II), Co(II), Cd(II), Pb(II)] from aqueous media containing different amounts of these metal ions (5–800 ppm) at different pH values (2.0–8.0). It was found that the adsorption rates were high and the adsorption equilibrium was reached in about 30 min. The uptake of the transition metal ions onto the polymer from solutions containing a single metal ion was 3.17 mmol/g for Cu(II), 0.98 mmol/g for Cd(II), 0.79 mmol/g for Co(II), 0.78 mmol/g for Ni(II), and 0.32 mmol/g for Pb(II). This polymer showed high affinity for Cu(II) compared to the other metal ions in the single ion solution and in the mixture of transition metal ions. The affinity order of the transition metal ions was Cu(II) ? Ni(II) > Cd(II) > Co(II) > Pb(II) for competitive adsorption. More than 95% of the adsorbed transition metal ions were desorbed in 2 h in a desorption medium containing 1.0M HNO3. Poly(cyclam) was found to be suitable for repeated use of more than five cycles without a noticeable loss of adsorption capacity. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1406–1414, 2002  相似文献   

4.
Poly(N‐vinyl‐2‐pyrrolidone) and poly(N‐vinyl‐2‐pyrrolidone/acrylic acid) hydrogels were prepared by gamma irradiation for the removal of heavy metal ions (i.e., lead, copper, zinc, and cadmium) from aqueous solutions containing different amounts of these ions (2.5–10 mg/L) and at different pH values (1–13). The observed affinity order in adsorption of these metal ions on the hydrogels was Zn(II) > Pb(II) > Cu(II) > Cd(II) under competitive conditions. The optimal pH range for the heavy metal ions was from 7 to 9. The adsorption of the heavy metal ions decreased with increasing temperature in both water and synthetic seawater conditions. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2013–2018, 2003  相似文献   

5.
In this article, the adsorption properties of poly(acrylaminophosphonic-carboxyl-hydrazide) chelating fibers for Cu(II), Cd(II), Co(II), Mn(II), Pb(II), Zn(II), Ni(II), and Cr(III) are investigated by a batch technique. Based on the research results of binding capacity, adsorption isotherm, effect of pH value on sorption, and adsorption kinetics experiments, it is shown that the poly(acrylaminophosphonic-carboxyl-hydrazide) chelating fibers have higher binding capacities and good adsorption kinetic properties for heavy metal ions. The sorption of the metal ions on the chelating fibers is strongly dependent on the equilibrium pH value of the solution. The adsorption isotherms of Cu(II) and Cd(II) on the chelating fiber exhibit a Langmuir-type equation. The adsorbed Cu(II), Cd(II), Zn(II), and Pb(II) could be eluted by diluted nitric acid. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 7–14, 1998  相似文献   

6.
Two samples of macroporous crosslinked poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate), poly(GMA-co-EGDMA), with different porosity parameters were synthesized by suspension copolymerization and modified by ring-opening reaction of the pendant epoxy groups with ethylene diamine (EDA). The samples were characterized by mercury porosimetry, FT-IR spectroscopy and elemental analysis. The sorption rate of the modified copolymer, poly(GMA-co-EGDMA)-en for Cu(II) ions determined under non-competitive conditions was relatively rapid, i.e. the maximum capacity was reached within 30 min. Batch sorption capacities for Cu(II), Fe(II), Mn(II), Cd(II), Zn(II), Pb(II), Cr(III) and Pt(IV) ions were determined under non-competitive conditions in the pH range 1.25–5.5 at room temperature. The maximum sorption capacities of poly(GMA-co-EGDMA)-en under non-competitive conditions were 1.30 mmol/g for Pt(IV) at pH 5.5, 1.10 mmol/g for Cu(II) at pH 5.5, 1.06 mmol/g for Pb(II) at pH 1.25 and 0.67 mmol/g for Cd(II) ions at pH 5.5. The selectivity of poly(GMA-co-EGDMA)-en towards Cu(II), Co(II), Ni(II), Pb(II) and Pt(IV) ions was investigated under competitive conditions. Poly(GMA-co-EGDMA)-en showed high selectivity for Pt(IV) over Cu(II), Co(II), Ni(II) and Pb(II) ions at pH 2.1. At pH 5.5, the metal sorption capacities of poly(GMA-co-EGDMA)-en decreased in the order: Cu(II) > Co(II) > Pt(IV)  Ni(II) > Pb(II). Regeneration of the Cu(II), Ni(II) and Pb(II) loaded poly(GMA-co-EGDMA)-en with 2 M H2SO4 showed that the polymer can be reused in several sorption/desorption cycles.  相似文献   

7.
Two types of degradable poly(propylene glycol) (PPG) hydrogels that are suitable for the absorption of heavy metals have been presented. The PPG‐O‐P(O)Cl2 fragments obtained by treating hexafunctional PPG with phosphorous oxychloride (POCl3) react with 1,3‐propanediamine (PDA; Gel‐1 ) or PDA together with 1,2‐ethanedithiol ( Gel‐2 ), to yield cross‐linked and water‐swellable hydrogels in a one‐pot method. This protocol for the fabrication of PPG hydrogels exhibits promising advantages over prior methods including a short reaction time, mass‐production, easy separation, and high yield. A series of heavy metal ions were employed to test the adsorptive properties of the hydrogels. Gel‐2 shows better adsorption capacity than Gel‐1 for all the metal ions and the metal ions adsorption efficiency of the two types of hydrogels is in the order of Fe(III) > Pb(II) > Cd(II) > Zn(II) > Cu(II) > Ni(II) > Co(II) > Hg(II). The amounts of metal ions adsorbed increases with metal ion concentration and hydrogel dosage, but decreases with temperature. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40610.  相似文献   

8.
The ability of poly(N-vinylimidazole) hydrogels to bind Cu(II), Co(II), Ni(II), Zn(II), Cd(II), Pb(II), Hg(II), Na(I) and Ca(II) cations, as well as uranyl, vanadium, rhenium, and molybdenum complexes, was studied by a batch equilibrium procedure using atomic absorption spectroscopy and UV-Vis spectrophotometry. The optimum pH for ion adsorption was determined in any case. The influence of the crosslinking degree of the hydrogel on the sorption kinetics and the sorption capacity at equilibrium were also studied. Sorption from the binary mixture Cu(II) + U(VI) was also analyzed at the optimum pH. Elution of the ions adsorbed from single and binary solutions was achieved in all cases. A selective desorption of loaded hydrogels with two types of ions was attained. The general conclusion is that poly(N-vinylimidazole) hydrogels are excellent materials for retention of all the ions studied here [except for Pb(II), Na(I), and Ca(II)]. The elution, which can be selective, allows regeneration of the hydrogel. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:1109–1118, 1998  相似文献   

9.
Poly(methyl methacrylate) (PMMA) microspheres carrying poly(ethylene imine) (PEI) were prepared for the removal of heavy‐metal ions (copper, cadmium, and lead) from aqueous solutions with different amounts of these ions (50–600 mg/L) and different pH values (3.0–7.0). Ester groups in the PMMA structures were converted to imine groups in a reaction with PEI as a metal‐chelating ligand in the presence of NaH. The adsorption of heavy‐metal ions on the unmodified PMMA microspheres was very low [3.6 μmol/g for Cu(II), 4.6 μmol/g for Cd(II), and 4.2 μmol/g for Pb(II)]. PEI immobilization significantly increased the heavy‐metal adsorption [0.224 mmol/g for Cu(II), 0.276 mmol/g for Cd(II), and 0.126 mmol/g for Pb(II)]. The affinity order of adsorption (in moles) was Cd(II) > Cu(II) > Pb(II). The adsorption of heavy‐metal ions increased with increasing pH and reached a plateau value around pH 5.5. Their adsorption behavior was approximately described with the Langmuir equation. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 197–205, 2001  相似文献   

10.
Abstract

A solid phase extraction and preconcentration methodology utilizing a new chelating resin is described for the separation of Cd, Ni, Co, Cu, and Zn. The chelating resin matrix was prepared by covalently linking 2,2′‐dithiobisaniline synthesized from 2‐aminothiophenol with the benzene ring of polystyrene‐divinylbenzene resin Amberlite XAD‐2 through a –N?N– group. Its adsorption and preconcentration behavior for Cd, Ni, Co, Cu, and Zn in aqueous solution was studied using batch and column procedures in detail. The newly designed resin quantitatively adsorbs Cd, Ni, Co, Cu, and Zn above pH 5.0. Subsequent elution with 2 M HCl readily strips the sorbed metal ions from the resin. The sorption capacity is 360, 230, 170, 200, and 150 mol g?1 for Cd, Ni, Co, Cu, and Zn, respectively. Their preconcentration factors are 80–200. The time for 80% sorption was less than 10 min for all five metal ions. The effects of electrolytes on the preconcentration were also investigated with the recoveries >95%. The procedure was validated by analysis of a standard reference river sediment material (GBW 08301 China). The developed method was successively utilized for the determination of Cd, Ni, Co, Cu, and Zn in tap water and river water by flame atomic absorption spectrometry (FAAS) after column SPE and preconcentration. The 3σ detection limits for these metal ions were found to be 0.10, 0.34, 0.42, 0.16, and 0.52 g L?1, respectively. The relative standard deviation was <10% for the determination of 10 g each of Cd, Ni, Co, Cu, and Zn in a 100 mL water sample.  相似文献   

11.
Poly[(2‐hydroxyethyl)‐DL ‐aspartamide] was synthesized by polyreaction of aspartic acid and subsequent polymer‐analogous functionalization with ethanolamine. The water‐soluble polymer was characterized by FTIR, NMR, TGA and light‐scattering measurements. The metal complexing properties of the polymer were studied for Cr(III), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Sr(II), Cd(II) and Pb(II) ions in aqueous solution using the liquid‐phase polymer‐based retention (LPR) method. According to the retention profiles of LPR, Cr(III), Fe(III), Cu(II) and Pb(II) showed a strong interaction with this polymer under these conditions, indicated by retention values of about 100 %. In contrast, Co(II), Ni(II), Zn(II), Sr(II) and Cd(II) exhibited retention values of only 50–60 % in dilute solution at pH 5. © 2000 Society of Chemical Industry  相似文献   

12.
《分离科学与技术》2012,47(8):1313-1320
The removal characteristics of Cd(II), Cu(II), Pb(II), and Zn(II) from model aqueous solutions by 5 natural Mongolian zeolites were investigated. The adsorption of metals on zeolites reached a plateau value within 6 h. The adsorption kinetic data were fitted with adsorption kinetic models. The equilibrium adsorption capacity of the zeolites was measured and fitted using Langmuir and Freundlich isotherm models. The order of adsorption capacity of zeolite was Pb(II) > Zn(II) > Cu(II) > Cd(II). The maximum adsorption capacity of natural zeolite depends on its cation exchange capacity and pH. The leaching properties of metals were simulated using four leaching solutions. The results show that natural zeolite can be used as an adsorbent for metal ions from aqueous solutions or as a stabilizer for metal-contaminated soils.  相似文献   

13.
Poly[5,5??-methylene-bis(2-hydroxybenzaldehyde)1,2-phenylenediimine] resin was prepared and characterized by employing elemental, thermal analysis, FTIR, and UV?Cvisible spectroscopy. The metal uptake behavior of synthesized polymer towards Cu(II), Co(II), Ni(II), Fe(III) and Cd(II) ions was investigated and optimized with respect to pH, shaking speed, and equilibration time. The sorption data of all these metal ions followed Langmuir, Freundlich, and Dubinin?CRadushkevich isotherms. The Freundlich parameters were computed 1/n?=?0.31?±?0.02, 0.3091?±?0.02, 0.3201?±?0.05, 0.368?±?0.04, and 0.23?±?0.01, A?=?3.4?±?0.03, 4.31?±?0.02, 4.683?±?0.01, 5.43?±?0.03, and 2.8?±?0.05?mmol?g?1 for Cu(II), Co(II), Ni(II), Fe(III), and Cd(II) ions, respectively. The variation of sorption with temperature gives thermodynamic quantity (??H) in the range of 36.72?C53.21?kJ/mol. Using kinetic equations (Morris?CWeber and Lagergren equations), values of intraparticle transport and the first-order rate constant was computed for all the five metals ions. The sorption procedure is utilized to preconcentrate these ions prior to their determination by atomic absorption spectrometer. It was found that the adsorption capacity values for metal-ion intake followed the following order: Cd(II)?>?Co(II)?>?Fe(III)?>?Ni(II)?>?Cu(II).  相似文献   

14.
An activated carbon sorbent containing thioetheric sites (ACTS) was prepared by modification of the activated carbon with 2,2′-thiodiethanol. The specific surface area, pore volume, concentration of oxygen-containing groups and sulfur content of the sorbent were determined. The sorption behavior towards ions of some precious metals—Au(III), Pt(IV), Pd(II) and heavy metals—Ni(II), Zn(II), Fe(III), Cu(II), Pb(II), Cd(II) and Co(II) was studied. Selectivity towards gold, palladium and platinum in the pH range 1–9 was observed. The capacity for gold was 80 mg g−1. The sorption of Au(III) at pH 1 is not affected by milligram amounts of Ni(II), Zn(II), Fe(III), Cu(II), Pb(II), Cd(II) and Co(II). The sorbed gold species is Au(0).  相似文献   

15.
《分离科学与技术》2012,47(12):1984-1993
The uniform porous and continuous phase lead (II) adsorbent hydrogel, was prepared by copolymerizing 2-hydroxyethyl methacrylate (HEMA), acrylic acid (AAc), and N,N′-methylenebisacrylamide (MBAAm), with n-vinyl imidazole (VIM). A series of hydrogels, including different ratios of VIM, were prepared by photopolymerization and characterized. The influence of the uptake conditions such as pH, functional monomer percent, contact time, initial feed concentration, and foreign metal ions on the metal ion binding capacity of hydrogel, were also tested. The selective chelation of heavy metal ions from synthetic wastewater was also studied. The affinity order on molar basis was observed as follows: Pb (II) > Zn (II) > Cd (II). Chelation behavior of heavy metal ions could be modelled using both the Langmuir and Freundlich isotherms and it was seen that the Langmuir isotherm model was the best fit for the adsorption of Pb (II) ions in P(VIM/AAc/HEMA) hydrogel. Moreover, the limits of detection and the quantification values were determined. Regeneration of the hydrogels was easily performed with 1 M HCl and the same hydrogel can be reused five times almost without any loss of adsorption capacity. All these features make P(VIM/AAc/HEMA) hydrogels potential candidate adsorbent for heavy metal removal.  相似文献   

16.
Abstract

A new sorbent, the polyethylenimine methylenephosphonic acid (PEIMPA), was synthesized from commercially available polyethylenimine. After characterization by (1H, 13C, 31P) NMR, elementary analysis, UV/VIS and FTIR, the new ion exchange polymer PEIMPA has been investigated in liquid – solid extraction of a mixture of Cd(II), Co(II), Cu(II), Fe(III), Ni(II), Pb(II), and Zn(II) cations from a mineral residue of zinc ore dissolved in nitric acid. The selectivity of this polymer was studied as a function of pH. PEIMPA can sorb much higher amounts of Fe ion than Cd, Co, Cu, Ni, Pb, and Zn ions. The recovery of Fe(III) is almost quantitative. Because of this remarkable affinity, the PEIMPA resin has the potential for application in several fields. Further studies of the polymer are in progress.  相似文献   

17.
A series of poly(acrylamide‐co‐4‐vinylpyridine) hydrogels having varied acrylamide/4‐vinylpyridine content and different crosslink ratios of N,N′‐methylene‐bisacrylamide was prepared by using solution polymerization. The prepared hydrogel polymers were characterized by their elemental analysis, infrared spectroscopy, and equilibrium water content. The polymers were investigated toward metal ion uptake of Mn(II), Co(II), Ni(II), Cu(II), and Zn(II). The polymers were more sensitive to Cu(II) and Ni(II) and the order of metal ion binding was Ni(II), Cu(II) > Zn(II) > Co(II) > Mn(II). Metal ion uptake by the polymers was reduced as the pH of the medium decreased. Recycling of the resins resulted in high recovery of the metal ions from their aqueous solutions. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2522–2526, 2003  相似文献   

18.
Removal of nitrite ions from aqueous solutions by protonated poly(N,N‐dimethylamino ethylmethacrylate) hydrogels (P(DMAEMA)) was investigated. We have shown that polycationic and pendant secondary amine group containing P(DMAEMA) hydogels is very efficient and highly selective for the removal of nitrite ions from aqueous solutions at even in very high concentrations. Adsorption studies have shown that pH of the nitrite solution has influence on the nitrite ion uptake capacity of P(DMAEMA) hydrogels. The adsorption capacity of hydrogels had been increased up to 3100 mg NO/g dry gel, by changing pH of the solution. The results of the adsorption studies showed that the interaction between nitrite ions and quaternized amine groups agree with the Langmuir‐type isotherm. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 6023–6027, 2006  相似文献   

19.
The polyacrylate anion exchangers are widely used in purification of heavy metal ions from wastewaters and different accompanying complexing agents. Such effluents containing the chelators (EDTA, NTA, HEDTA, DTPA, and IDA) are discharged from relevant industries such as printed circuits boards, plating on plastics, metal finishing and others. The sorption was studied as a function of phase contact time and pH by the batch technique. It was found that the removal of heavy metal ions in the presence of EDTA, NTA and IDA strictly depends on the phase contact time and pH values. Various kinetic models such as the pseudo first-order and the pseudo second-order as well as the intraparticle one were also tested to estimate the sorption rate. The equilibrium capacities of the studied anion exchangers for Cu(II), Zn(II), Co(II), Ni(II), Pb(II) and Cd(II) in the presence of EDTA were the highest for Pb(II) and Cd(II). The order of sorption for Amberlite IRA 458, Amberlite IRA 958 as well as Amberlite IRA 67 can be as follows: Pb(II) > Cd(II) > Zn(II) > Cu(II) > Ni(II) > Co(II). The stability of forming complexes was also compared. The estimation of the capacities of anion exchangers under investigation by the continuous column studies was also carried out.  相似文献   

20.
SUMMARY Poly(N-vinylpyrrolidone) (PVP) was investigated as a novel extracting agent. The metal ion extraction properties for Cu(II), Co(II), Ni(II), Cd(II), Zn(II), Pb(II), Hg(II), Cr(III) and Fe(III) were investigated using the liquid-liquid solvent extraction technique (bath method). The metal ion interactions with the polymer were determined as a function of the pH as well as the kinetic characteristic and stripping. For copper ions pH 4 was the optimum extracting pH value, and the 2M hydrochloride acid was better than nitric acid as a stripping agent. Received: 7 September 2000/Revised version: 14 September 2000/Accepted: 14 September 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号