首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This research deals with the decolorization of synthetic wastewater, prepared with the acid 1:2 metal-complex textile dye C.I. Acid Blue 193, using the ozonation (O3) and H2O2/O3 processes. To minimize the number of experiments, they were performed using the 2k factorial design. Five influential parameters were examined: initial dye concentration, ozone flow rate, initial pH value, decolorization time and H2O2 addition. The decolorization efficiency was 95% in 20 minutes (pH = 7; O3 flow rate of 2 g/L.h) and a higher increase in the toxicity after the ozonation process (39%) indicates the formation of carcinogenic by-products. According to the variance test analysis, the initial dye concentration, the ozone flow rate, the initial pH value and the decolorization time and their first- and second-order interactions are significant, while the H2O2 addition was not important with respect to the discussed range. With the help of these significant factors a regression model was constructed and the adequacy of the model was checked. The obtained regression polynomial was used to model the relation between the absorbance and the influential parameters by fitting the response surface. This response surface may be used to predict the absorbance result from a set of influential parameters, or it can be rearranged in such a way as to predict the set of process decolorization parameters necessary to reduce the absorbance of wastewater with the given initial dye concentration, below the prescribed limit. It is also shown that the 2k factorial design can be suitable for predicting the operating expenses of the ozonation.  相似文献   

2.
The objective of the presented study was to test various oxidation processes with the aim being to reduce the concentration and toxicity of biocide wastewater from a Slovenian phytopharmaceutical factory. Laboratory-scale experiments employing two AOP processes – ozonation (O3) and peroxone (H2O2/O3) – were applied to reduce the concentration of the active components involved, i.e., methylisothiazolone (MI), chloromethylisothiazolone (CMI) and dichloromethylisothiazolone (DCMI). The reduction of the biocide wastewater load for the performed oxidation processes was evaluated using ecological parameters. The H2O2/O3 oxidation procedure using an O3 flow rate of 1g/L h, at a pH value of 10 and with the addition of 5 ml of H2O2 (0.3 M) proved to be the most effective treatment. The toxicity of the biocide-load wastewater with an initial EC50 = 0.38%, decreased to EC50 (24h) >100% and EC50 (48h) = 76%.  相似文献   

3.
《分离科学与技术》2012,47(11):1628-1637
Removal of natural organic matter and iron co-existing in water source is a challenge and a major problem in the developing world where the most commonly applied process in water treatment is pre-chlorination which results in early formation chlorinated by-products. Results from this study proved that horizontal roughing filter system with natural pumice is a promising option for pre-treatment of such waters. The filter recorded average reductions of total and ferrous iron of 39% and 89%, respectively, and trihalomethanes formation potential of 35% after 1 hour and 29% after 6 hours along the filter. Further reductions of 49% and 61% were achieved when the pretreated water was subjected to coagulation.  相似文献   

4.
Cu2V2O7/Cu3V2O8/g-C3N4 heterojunctions (CVCs) were prepared successfully by the reheating synthesis method. The thermal etching process increased the specific surface area. The formation of heterojunctions enhanced the visible light absorption and improved the separation efficiency of photoinduced charge carriers. Therefore, CVCs exhibited superior adsorption capacity and photocatalytic performance in comparison with pristine g-C3N4 (CN). CVC-2 (containing 2 wt% of Cu2V2O7/Cu3V2O8) possessed the best synergistic removal efficiency for removal of dyes and antibiotics, in which 96.2% of methylene blue (MB), 97.3% of rhodamine B (RhB), 83.0% of ciprofloxacin (CIP), 86.0% of tetracycline (TC) and 80.5% of oxytetracycline (OTC) were eliminated by the adsorption and photocatalysis synergistic effect under visible light irradiation. The pseudo first order rate constants of MB and RhB photocatalytic degradation on CVC-2 were 3 times and 10 times that of pristine CN. For photocatalytic degradation of CIP, TC and OTC, it was 3.6, 1.8 and 6.1 times that of CN. DRS, XPS VB and ESR results suggested that CVCs had the characteristics of a Z-scheme photocatalytic system. This study provides a reliable reference for the treatment of real wastewater by the adsorption and photocatalysis synergistic process.  相似文献   

5.
Temperature-programmed desorption (TPD) and oxidation (TPO) were used to investigate the decomposition and oxidation of ethanol on Al2O3, Pd/Al2O3, and PdO/Al2O3. Ethyl--13C alcohol (CH3 13CH2OH) was adsorbed on the catalysts so that reaction pathways of the two carbons could be distinguished. Alumina was mainly a dehydration catalyst, but dehydrogenation was also observed and some carbon remained on the surface. In the presence of O2, A12O3 oxidized the decomposition products and the-carbon was oxidized faster. Ethanol, which was adsorbed on A12O3, decomposed much faster on Pd/A12O3 by diffusing to Pd and undergoing CO elimination to form CH4,13CO, H2, and surface carbon. On PdO/A12O3, the decomposition was slower than on Pd/A12O3 until lattice oxygen was extracted above 450 K; the decomposition products were oxidized by lattice oxygen. In the presence of gas phase O2, Pd/Al2O3 was an active oxidation catalyst at low temperature, but lattice oxygen had to be extracted from PdO/A12O3 before it had significant oxidation activity.  相似文献   

6.
The reduction of lean NOx using ethanol in simulated diesel engine exhaust was carried out over Ag/Al2O3 catalysts in the presence of H2O and SO2. The Ag/Al2O3 catalysts are highly active for the reduction of lean NOx by ethanol but the reaction is accompanied by side reactions to form CH3CHO, CO along with small amounts of hydrocarbons (C3H6, C2H4, C2H2 and CH4) and nitrogen compounds such as NH3 and N2O. The presence of H2O enhances the NOx reduction while SO2 suppresses the reduction. The presence of SO2 along with H2O suppresses the formation of acetaldehyde and NH3. By infrared spectroscopy, it was revealed that the reactivity of NCO species formed in the course of the reaction was greatly enhanced in the presence of H2O. The NCO species readily reacts with NO in the presence of O2 and H2O at room temperature, being converted to N2 and CO2 (CO). Addition of SO2 suppresses the formation of NCO species and lowers the reactivity of the NCO species. However, the reduction of NOx is still kept at high conversion levels in the presence of H2O and SO2 over the present catalysts. About 80% of NOx in the simulated diesel engine exhaust was removed at 743 K. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
H2La2Ti3O10/ TiO2 intercalated nanomaterial was fabricated by successive intercalation reactions of H2La2Ti3O10 with n-C6H13NH2/C2H5OH mixed solution and acid TiO2 sol, followed by irradiating with a high-pressure mercury lamp. The intercalated materials possess a gallery height of 0.46 nm and a specific surface area of 31.58 m2·g−1, which indicate the formation of a porous material. H2La2Ti3O10/TiO2 shows photocatalytic activity for the decomposition of organic dye under irradiation with visible light and the activity of TiO2 intercalated material was superior to the unsupported one.  相似文献   

8.
《分离科学与技术》2012,47(14):2220-2229
Fe(III)/H2O2 system is an effective method for separating the organic compounds from aqueous solution, whereas it is often investigated under lower pH conditions. In order to improve performance of the system, a Fe(III)/H2O2-like system that was composed of iron-based coagulant and H2O2 was developed, which has the combined effect of flocculation and oxidation. The system when used for decolorization of an organic azo dye solution, Procion Red MX-5B, under wider pH range, indicated higher decolorization efficiency. Parameters affecting the decolorization such as coagulant dosage, H2O2 concentration, initial solution pH, temperature, and initial dye concentration were examined in this study. The results indicated that with appropriate coagulant dosage, H2O2 concentration, and pH, it was more effective for the decolorization, especially in a weak alkaline environment (pH = 7-8); the pseudo-first-order kinetics could express the azo dye concentration as a function of the reaction time. This study further illustrated that the azo dye solution was degraded to a degree with 53.22% TOC removal at an initial total TOC concentration of 14.92 mg/L. Overall, the established system in this study was favorable to the decolorization of soluble azo dye.  相似文献   

9.
The space velocity had profound and complicated effects on methanol synthesis from CO2/CO/H2 over Cu/ZnO/Al2O3 at 523 K and 3.0MPa. At high space velocities, methanol yields as well as the rate of methanol production increased continuously with increasing CO2 concentration in the feed. Below a certain space velocity, methanol yields and reaction rates showed a maximum at CO2 concentration of 5–10%. Different coverages of surface reaction intermediates on copper appeared to be responsible for this phenomenon. The space velocity that gave the maximal rate of methanol production also depended on the feed composition. Higher space velocity yielded higher rates for CO2/ H2 and the opposite effect was observed for the CO/H2 feed. For CO2/CO/H2 feed, an optimal space velocity existed for obtaining the maximal rate.  相似文献   

10.
Ozone was tested for the detoxification of a mixture of five parabens. A combined O3/H2O2 process was optimized leading to up to 50% of COD removal in 15 min, while less than 50 min were needed to achieve total degradation. The toxic effect of the raw mixture and after 15 min of treatment by O3/H2O2 was evaluated using V. fischeri and C. fluminea and it was observed a strong detoxification after 15 min of oxidation. Moreover, while the raw effluent promoted the formation of reactive oxygen species in Wistar rat brain slices, no changes were observed after the O3/H2O2 treatment.  相似文献   

11.
Methoxy formed on Al2O3 from13CO and H2 coadsorption on Ni/Al2O3 was trapped by C2H5OH adsorption and temperature-programmed reaction (TPR). The presence of excess C2H5OH significantly increases the rate of13CH3OH and (13CH3)2O formation. The13CH3OH forms by the reaction of C2H5OH with13CH3O on Al2O3. In the absence of C2H5OH,TPR following13CO and H2 coadsorption did not produce significant amounts of13CH3OHor(13CH3)2O.  相似文献   

12.
PWN's water treatment plant Andijk was commissioned almost 40 years ago. It services water from the IJssel Lake by conventional surface water treatment. In view of taste and odor problems the plant was retrofitted with GAC filtration 25 years ago. The finished water quality still complies with all E.C. and Dutch drinking water standards. Nevertheless an upgrade is desired to avoid the use of chlorine and to extend the barriers against pathogenic micro-organisms and a broad range of organic micropollutants such as pesticides, rocket fuel by-products (NDMA), fuel oxygenates (MTBE), solvents (dioxane), endocrine disruptors, algae toxins, pharmaceuticals, etc. UV/H2O2 treatment was selected for both primary disinfection and organic contaminant control. The disinfection requirements were based on a 10?4 health risk. The required 3 log inactivation for Giardia and Cryptosporidium was achieved by an UV dose lower than 20 mJ/cm2. The highest UV dose, 105 mJ/cm2, was needed for the inactivation of spores of Sulphite Reducing Clostridia. Reactivation of protozoa was established for UV doses up to 25 mJ/cm2, for doses higher than 45 mJ/cm2 no reactivation was observed. In view of the raw water concentrations the required organic contaminant degradation was set at 80%. Collimated beam and pilot-plant work showed that the required degradation can be achieved by the proper combination of electric energy and H2O2. In a UV reactor optimized for organic contaminant control, UV dose of 540 mJ/cm2 (about 0.5 kWh/m3) and 6 mg/L H2O2 were needed. Under those conditions pesticides (atrazine), NDMA, MTBE, dioxane, endocrine disruptors (bisphenol A), microcystine and pharmaceuticals (diclofenac, ibuprofen) could be removed up to the required 80%. Bromate formation was absent while formation of primary metabolites was insignificant. The UV dose for organic contaminant control is about five times higher than the dose needed for disinfection. The UV/H2O2 process was implemented into the existing treatment train between the sand and GAC filters. In the GAC filters excess H2O2 is degraded, nitrite is converted into nitrate and biodegradable reaction products are consumed by bacteria. The full-scale installation with 3 streets of 4 Trojan Swift 16L30 reactors has been in operation since October 2004. Disinfection and organic contaminant control are as expected.  相似文献   

13.
The catalytic dehydro-aromatization reaction over Mo/HZSM-5 catalyst was drastically stabilized by the co-addition of 5.4% H2 and 1.8% H2O to methane feed at 750 °C, 0.3 MPa and methane space velocity of 3000 mL g−1 h−1, suppressing the coke formation effectively, compared with single hydrogen or steam addition.  相似文献   

14.
The surface acidic properties of two series of samples,-Al2O3 and-Al2O3-SnO2 after reaction with CCl2F2/H2 (CFC12/H2), have been investigated by solid state high resolution CP/MAS 31-PNMR, using trimethylphosphine (TMP) as a probe molecule. It was found after reaction, that Brønsted acid sites were formed on the-Al2O3 surface. The longer the reaction time, the more rigidly TMP bonded to the acid sites. For the-Al2O3-SnO2 system, Brønsted acid sites were also found on both the Al2O3 and SnO2 surfaces after reaction of the-Al2O3-SnO2 system with CFC12/H2. The signal intensity relevant to these sites, indicates that the SnO2 component is attached to, and therefore covers Brønsted sites of-Al2O3. Two types of Lewis acid site initially present on SnO2 were not observed after reaction with CFC12/H2.  相似文献   

15.
Formation of Coo phases with different surface structure over 10 wt% Co/Al2O3 and their catalytic properties were induced by pretreatments in H2 at 570 K for 1 h or 20 h. Electronic behaviour of the Coo phase, which consists of small (after 1 h reduction) or large bulk-like particles (after 20 h reduction), did not change during the CO hydrogenation after 5 h on stream as was determined by XPS. On the basis of the measured C2+ hydrocarbon selectivities the CO molecules are suggested to dissociate on small Co particles to a larger extent than on large cobalt particles. The slight decrease in the catalytic activity with increasing time on stream obtained for the long-term reduced sample is explained by the change in the surface Coo content detected by XPS. The increase in the catalytic activity along with the change in olefin selectivity, measured for the sample reduced for 1 h, is interpreted by the change of a reaction path involving the Coo-support interface during the initial period of the reaction.  相似文献   

16.
The oxidation reaction of CO with O2 on the FeOx/Pt/TiO2 catalyst is markedly enhanced by H2 and/or H2O, but no such enhancement occurs on the Pt/TiO2 catalyst. Isotope effects were studied by H2/D2 and H2O/D2O on the FeOx/Pt/TiO2 catalyst, and almost the same magnitude of isotope effect of ca. 1.4 was observed for the enhancement of the CO conversion by H2/D2 as well as by H2O/D2O at 60 °C. This result suggests that the oxidation of CO with O2 via such intermediates as formate or bicarbonate in the presence of H2O, in which H2O or D2O acts as a molecular catalyst to promote the oxidation of CO as described below.   相似文献   

17.
The stability and the activity of Fe2O3/Cr2O3 and ZnO/Cr2O3 catalysts were examined for a reverse-watergas-shift reaction (RWReaction). The initial activities of those catalysts were quite high so that the conversion reached close to equilibrium. The activity of Fe2O3/Cr2O3 catalyst decreased from 33.5 to 29.8% during the RWReaction for 75 h at 873 K with GHSV (ml/gcat · h) of 100,000. Moreover, the coke formation on the Fe2O3/Cr2O3 catalyst caused clogging in the RWReactor of the CAMERE process. On the other hand, the ZnO/Cr2O3 catalyst showed no coke formation and no deactivation for the RWReaction at 873 K with GHSV (ml/gcat · h) of 150,000. The ZnO/Cr2O3 was a good catalyst for the RWReaction of the CAMERE process.  相似文献   

18.
The addition of B2O3 to a Cu/ZnO/Al2O3 catalyst increased the activity of the catalyst for methanol synthesis after an induction period during the reaction. The stability of the B2O3-containing Cu/ZnO/Al2O3 catalyst was greatly improved by the addition of a small amount of colloidal silica to the catalyst. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
The effects of thermal aging and H2O treatment on the physicochemical properties of BaO/Al2O3 (the NOx storage component in the lean NOx trap systems) were investigated by means of X-ray diffraction (XRD), BET, TEM/EDX and NO2 TPD. Thermal aging at 1000 °C for 10 h converted dispersed BaO/BaCO3 on Al2O3 into low surface area crystalline BaAl2O4. TEM/EDX and XRD analysis showed that H2O treatment at room temperature facilitated a dissolution/reprecipitation process, resulting in the formation of a highly crystalline BaCO3 phase segregated from the Al2O3 support. Crystalline BaCO3 was formed from conversion of both BaAl2O4 and a dispersed BaO/BaCO3 phase, initially present on the Al2O3 support material after calcinations at 1000 and 500 °C, respectively. Such a phase change proceeded rapidly for dispersed BaO/BaCO3/Al2O3 samples calcined at relatively low temperatures with large BaCO3 crystallites observed in XRD within 10 min after contacting the sample with water. Significantly, we also find that the change in barium phase occurs even at room temperature in an ambient atmosphere by contact of the sample with moisture in the air, although the rate is relatively slow. These phenomena imply that special care to prevent the water contact must be taken during catalyst synthesis/storage, and during realistic operation of Pt/BaO/Al2O3 NOx trap catalysts since both processes involve potential exposure of the material to CO2 and liquid and/or vapor H2O. Based on the results, a model that describes the behavior of Ba-containing species upon thermal aging and H2O treatment is proposed.  相似文献   

20.
An Fe2O3 (10 wt%)/Al2O3 (90 wt%) catalyst prepared by a coprecipitation method was found to be effective for dehydrogenation of ethylbenzene to produce styrene in the presence of CO2 instead of steam used in commercial processes. The dehydrogenation of ethylbenzene over the catalyst in the presence of CO2 was considered to proceed both via a one-step pathway and via a two-step pathway. CO2 was found to suppress the deactivation of the catalyst during the dehydrogenation of ethylbenzene. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号