首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The axial dispersion coefficients in the continuous phase and holdup of dispersed phase have been studied in a 4.2 cm inside diameter and 200 cm height pulsed doughnut-disc type plates extraction column. The axial concentration gradient in a continuous extraction column was expressed mathematically in terms of Peclet number by axial dispersion model. Peclet numbers have been calculated from response curves using KC1 solution as an impulse input fracer. Experimental data have been taken for both continuous and dispersed phase with plate spacing, pulsing amplitudes, frequencies, and superficial velocities as system variables. Modified axial dispersion coefficients have been correlated by regression analysis of experimental data, and following equations were obtained. 1. Axial dispersion coefficient (single phase) Ec = 3.5H-13 A1.5.1 f + 30.95 Uc 2. Axial dispsion coefficient (two phase) Ec = 2.36 H-0 8 A1.34 f + 20.89 Uc 3. Fractional holdup of the dispersed phase Φd = 4 2xl0-5H-0.44 Af1.28Ud 0.93  相似文献   

2.
The effects of the continuous and dispersed phase velocity and particle size on the axial dispersion of the continuous phase have been determined in two (liquid-liquid) and three (liquid-liquid-solid) phase fluidized beds. In a cocurrent liquid-liquid flow system, the axial dispersion coefficient increases with both the dispersed and continuous phase velocities. In three phase fluidized beds, the coefficient increases with dispersed phase velocity but it decreases with the particle size. Also the coefficient exhibits a maximum value with an increase in the continuous phase velocity at the lower dispersed phase velocities, but it increases with the continuous phase velocity at higher dispersed phase velocities. The axial dispersion coefficients in terms of Peclet number have been correlated in terms of the ratio of fluid velocities and the ratio of the particle size to column diameter, based on the isotropic turbulence theory.  相似文献   

3.
The effects of interactions between the perforated and baffle plates, of pulse amplitude and of pulse frequency on axial dispersion in the continuous phase, on the dispersed phase holdup and on the flooding condition have been determined for a 10.2 cm 1D pulsed extraction column. The axial dispersion coefficient increased with both the pulse amplitude and the frequency, but it decreased with the decrease in baffle spacing in the unit module. Dispersed phase holdup increased with the number of perforated plates in the unit module at the lower pulsation velocities and increased with the pulse velocity. The baffle plate reduced the total throughputs, but baffle spacing did not have any significant effect on the total throughput.  相似文献   

4.
Dispersed phase holdup was measured in a pulsed plate column for the kerosene-water system under binary conditions and under solute transfer from dispersed to continuous and continuous to dispersed phases. The experimental data were satisfactorily modelled through a recirculation regime model. The drop size distribution, measured by a photographic technique, exhibited a multinodal character at low agitation rates and high dispersed phase flow rate. Sauter mean drop diameter was found to depend on the agitation rate, the dispersed phase flow rate, the mass transfer direction and the plate free area. Correlations for d32 and the interfacial area were presented using Kolmogoroff's isotropic turbulence model.  相似文献   

5.
A novel reciprocating-plate liquid-liquid extraction column is proposed. It features a simple design that utilizes as the plates mesh screens with a fractional free area larger than 64%. A hydrodynamic and mass transfer study of the column was carried out in which the existence of a uniform liquid-liquid dispersion throughout the column at relatively low speeds of plate reciprocation was confirmed. Experimental results show that in comparison with other reciprocating columns, the present column has these desirable qualities: (1) large dispersed phase holdup and overall mass transfer coefficient, (2) low power requirements, (3) high flow capacity. A correlation of the dispersed phase holdup data based on slip and drop characteristic velocities is presented. The drop characteristic velocity for the screen plate column is empirically related to the power dissipation rate and system properties. On propose une nouvelle colonne d'extraction liquide-liquide munie de plateaux réciproques. Il s'agit d'une conception simple qui utilise comme plateaux des tamis à mailles avec une zone libre fractionnelle supérieure à 64%.  相似文献   

6.
The residence time distribution (RTD) for liquid phase in a trickle bed reactor (TBR) has been experimentally studied for air-water system. Experiments were performed in a 15.2 cm diameter column using commerical alumina extrudates with D/dp ratio equal to 75 to eliminate the radial flow differences. The range of liquid and gas flow rates covered was 3.76 < ReL < 9.3 and 0 < ReG < 2.92. The axial dispersion model was used to compute axial dispersion coefficient. The effect of liquid and gas flow rates on total liquid holdup and axial dispersion was investigated. The total liquid holdup has been correlated to liquid and gas flow rates.  相似文献   

7.
This paper presents the results of an experimental study on the gas holdup and the liquid phase axial dispersion coefficient in a narrow packed and unpacked rectangular bubble column. In both cases the gas and liquid flow rates were varied and the data were obtained by employing standard tracer technique. The gas holdup and the axial dispersion coefficient for both the packed and unpacked columns were found to be dependent on the gas and liquid flow rates. For given gas and liquid velocities and a given packing size in the case of the packed column, the rectangular column gave significantly higher dispersion coefficients than a cylindrical column of the equivalent cross sectional area. This result agrees very well with the one predicted by the velocity distribution model. The correlations for the Peclet number, the axial dispersion coefficient, and the fluid holdup for both the unpacked and packed bubble columns are presented.  相似文献   

8.
Axial mixing in the continuous phase in a Landau reciprocating-plate column (LRPC) has been investigated for both single-phase and two-phase gas-liquid flow conditions. A hydrodynamic model is proposed in which axial mixing is described as a process consisting of a backflow through the plate plus longitudinal mixing within the stage. The region in the proximity of the plates is almost perfectly mixed, beyond which there is a low-intensity mixing zone that varies in height and degree of mixing depending on phase velocities as well as the plates design and oscillation velocity. The presence of the dispersed phase affects axial mixing in both the well- and poorly mixed regions of each stage in two opposite ways: it decreases the backflow between the stages due to the hindrance effect caused by the presence of gas bubbles, and it increases the axial dispersion coefficient in the second stage by increasing the turbulence and phase entrainment caused by circulation and bubbles rising. The model adjustable parameters were determined from an experimentally measured dispersion coefficient over a wide range of operating conditions using the transient tracer injection method. The predictions of the model compare favorably with experimental data and can be applied for describing axial mixing in the continuous phase in an LRPC with±14% accuracy.  相似文献   

9.
10.
This paper describes the results of an experimental study to evaluate phase holdups and RTD for a jet bubble column. The experimental data were obtained in a 61 cm diameter jet bubble column with a conical inlet. Air and water were used as a two-phase system. The ranges of gas and liquid velocities examined were 0 to 9 cm/sec and 0 to 0·6 cm/sec respectively, both based on the cylinder diameter. The experimental data indicate that in the conical section of the column, the gas holdup first decreases with an increase in distance away from the cone inlet, achieves a minimum and then increases until it reaches a somewhat constant value within the cylinder. Gas holdup varies radially with the maximum at the center and the minimum near the wall. Radially-averaged gas holdup increased with gas velocity and remained essentially unchanged with liquid velocity. The RTD measurements were correlated by a two-dimensional dispersion model. The axial dispersion coefficient increased linearly from the cone inlet to the cylinder. It also increased with the gas velocity. The radial dispersion coefficients were considerably smaller than the axial dispersion coefficients.  相似文献   

11.
The “Forward Mixing” model has been applied to data obtained from a 22 cm diameter pulsed plate extraction column. Measurements of drop size distributions, dispersed phase hold-up and concentration profiles for two systems (toluene-acetone-water and n-butanol-succinic acid-water) of quite different properties were made with the column operating in the emulsion region. Generated drop size distribution function parameters, size-dependent slip velocities and mass transfer coefficients, and continuous phase axial dispersion coefficients were accurate in predicting dispersed phase hold-up and extraction efficiencies (or the related plug flow number of transfer units). These parameters were correlated with phase superficial velocities and pulse velocities. The influence of continuous phase axial dispersion was much greater than the influence of drop size variation, and was not accurately predicted by most previous tracer-based correlations. An inlet dispersed phase distributor was beneficial to the performance with the high interfacial tension system.  相似文献   

12.
Axial dispersion coefficients in three-phase fluidized beds have been measured in a 0.152 m-ID x 1.8 m high column by the two points measuring technique with the axially dispersed plug flow model. The effects of liquid velocity (0.05–0.13 m/s), gas velocity (0.02–0.16 m/s) and particle size (3-8 mm) on the axial dispersion coefficient at the different axial positions (0.06–0.46 m) in the bed have been determined. The axial dispersion coefficient increases with increasing gas velocity but it decreases with an increase in particle size and exhibits a maximum value with an increase in the axial position from the distributor. The axial dispersion coefficients in terms of the Peclet number have been correlated in terms of the ratio of fluid velocities, the ratio of the panicle size to column diameter, and the dimensionless axial position in the bed based on the isotropic turbulence theory.  相似文献   

13.
Experimental results on the influence of the discharge plate geometry on the dimensionless residence time distribution (RTD) for material transport in a continuous rotary drum are described. The RTD obtained by a stimulus-response technique for the different discharge plates can be described well by the axial dispersed flow model. Based on the characteristic Peclet number of the flow regime, material flow tended more towards the plug flow condition at an intermediate size discharge opening. Calculation of the axial dispersion coefficient in each case revealed that the open-ended drum behaved more like an ideal mixer. The implication of these results on the design of continuous rotary devices is discussed.  相似文献   

14.
A Kenics® KMX static mixer that has curved-open blade internal structure was investigated to study its hydrodynamic performance related to residence time distribution and liquid holdup in a gas/liquid system. The static mixer reactor had 24 mixing elements arranged in line along the length of the reactor such that the angle between two neighboring elements is 90°. The length of the reactor was 0.98 m with an internal diameter of 3.8 cm and was operated cocurrently with vertical upflow. The fluids used were hydrogen (gas phase), monochlorobenzene (liquid phase) and hydrogenated nitrile butadiene rubber solution (liquid phase). In all the experiments, the polymer solution was maintained as a continuous phase while hydrogen gas was in the dispersed phase. All experiments were conducted in the laminar flow regime with the liquid side hydraulic Reynolds number in the range of 0.04-0.36 and the gas side hydraulic Reynolds number in the range of 3-18. Different polymer concentrations and different operating conditions with respect to gas/liquid flow rates were used to study the corresponding effects on the hydrodynamic parameters such as Peclet number (Pe) and the liquid holdup (εL). Empirical correlations were obtained for the axial dispersion coefficient (Da) and liquid holdup in liquid system alone and for the gas/liquid system separately. It was observed that the Peclet number decreased with the introduction of gas in to the reactor while in the liquid system alone, an increase in viscosity decreased the Peclet number. The liquid holdup was empirically correlated as a function of the physical properties of the fluids used in addition to the operating flow rates.  相似文献   

15.
Two ideal droplet length (l,) distributions have been derived for two different droplet shapes. The dispersed phase holdup (?d) increases with increasing dispersed phase velocity (Ud), but decreases with increasing continuous phase velocity, (Uc) in three-phase fluidized beds. In the droplet-coalescing flow regime, lv and the droplet rising velocity (vd) increase, but the spherical droplet fraction (k) decreases with increasing Ud and uc. In the droplet-disintegrating flow regime, the effects of ud and Uc on lv and k are insignificant, but vd increases with increasing Uc. Maximum values of lv, occur in the bed containing 1.7 mm diameter particles and lv has an uniform length of around 2.0 mm in beds with particle size larger than 3.0 mm.  相似文献   

16.
A technique involving the indicator colour change in an acidbase reaction has been used to measure axial dispersion coefficients in a 15 cm diameter pulsed column. Data have been obtained mainly for single phase (aqueous) flow with two different types of plate at two different spacings. With coarsely perforated plates, the dispersion coefficient is proportional to (amplitude)2 times frequency, but semicircular unperforated baffle plates show a dependence on amplitude times frequency. These results are critically compared with published data, and two types of flow regime for axial dispersion are indicated.  相似文献   

17.
This paper intends to study the single phase axial dispersion in pulsed sieve plate column using a combination of computational fluid dynamics (CFD) simulations and experimental measurements. Experiments and CFD simulations were conducted on 0.076 m diameter pilot scale column having standard geometry of 0.05 m plate spacing, 0.003 m hole diameter and 0.21 fractional free area. The effect of density of tracer solution and radial probe position on axial dispersion coefficient has been studied to ensure precision of the experimental measurement method. The effect of pulse velocity from 0.01 to 0.025 m/s and superficial velocity of water from 0.01 to 0.03 m/s has been studied. Simulations were carried out using commercial CFD software, FLUENT 6.2.16, with standard k? model for turbulence. An unsteady state tracer injection technique was used for axial dispersion measurement. The range of velocity ratio (ψ = Reo/Ren) employed in this work was 1–4 which is very low. Therefore the effect of superficial velocity, Vc was found to be greater than pulse velocity. These results were critically compared with published data and it has been found that single phase axial dispersion coefficient is directly proportional to effective velocity (Af + 0.5 Vc). The presented CFD predictions and validation with experimental data will provide useful basis for further work on single phase axial dispersion with various geometrical parameters and understanding the two phase flow patterns in pulsed sieve plate column.  相似文献   

18.
This article discusses the characteristics of turbulent gas–liquid flow through tubular reactors/contactors equipped with screen‐type static mixers from a macromixing perspective. The effect of changing the reactor configuration, and the operating conditions, were investigated by using four different screen geometries of varying mesh numbers. Residence time distribution experiments were conducted in the turbulent regime (4500 < Re < 29,000). Using a deconvolution technique, the RTD function was extracted to quantify the axial/longitudinal liquid‐phase dispersion coefficient. The findings highlight that axial dispersion increases with an increasing flow rate and/or gas‐phase volume fraction. However, regardless of the number and geometry of the mixing elements, reactor configuration, and/or operating conditions, the recorded liquid‐phase axial dispersion coefficients in the presence of screens was lower than that for an empty pipe. Furthermore, the geometry of the screen was found to directly affect the axial dispersion coefficient in the reactor. © 2016 American Institute of Chemical Engineers AIChE J, 63: 1390–1403, 2017  相似文献   

19.
The axial pressure profiles, allowable gas velocities and temperature distributions are measured for the fluidization of air—FCC cracking catalyst systems in 12- and 19-cm-diam. eight-stage fluid beds equipped with seven horizontal baffles. From these measurements, gas bubble holdup, apparent longitudinal dispersion and intermixing velocity of solid particles through the baffles are studied as functions of baffle design. It is shown that the gas bubble holdup increases, the operational range of gas flow decreases and the flow pattern of solid particles approaches plug flow with decreasing free area of baffles.  相似文献   

20.
The gas and dispersed phase holdups and mass transfer coefficients of liquid-iquid were determined for gas-liquid-liquid three phase system in a screen plate column. The flow pattern of gas-liquid-liquid three phase system was studied under different gas velocities. The shape factors showed the geometric properties of screen plates and the corrected drop chaxacteristic velocities were introduced. The phase holdup in two phases was correlated.The research results indicated that mass transfer coefficient for liquid-liquid system in a column with screen plates and gas agitation was found to increase apparently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号