首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Through a dip‐coating technique, carbon membranes were produced from a polymer blend consisting of the thermally stable polymer polyetherimide (PEI) and the thermally labile polymer polyethylene glycol (PEG). The PEG/PEI carbon membranes were synthesized on an alumina support coated with an Al2O3 intermediate layer. The polymer blend ratio and carbonization temperature influenced the structure and permeation performance of the derived carbon membranes. The porosity of the PEG/PEI carbon membranes increased with higher PEG content in the blends. However, the derived carbon membranes tended to lose gas permeability with raising the carbonization temperatures. The carbon membranes were successfully optimized in order to achieve the highest CO2/CH4 and CO2/N2 selectivities.  相似文献   

2.
Carbon hollow fiber membranes derived from polymer blend of polyetherimide and polyvinylpyrrolidone (PVP) were extensively prepared through stabilization under air atmosphere followed by carbonization under N2 atmosphere. The effects of the PVP compositions on the thermal behavior, structure, and gas permeation properties were investigated thoroughly by means of differential scanning calorimetry, thermogravimetric analysis, X‐ray diffraction, and pure gas permeation apparatus. The experimental results indicate that the transport mechanism of small gas molecules of N2, CO2, and CH4 is dominated by the molecular sieving effect. The gas permeation properties of the prepared carbon membranes have a strong dependency on PVP composition. The carbon membranes prepared from polymer blends with 6 wt % PVP demonstrated the highest CO2/CH4 and CO2/N2 selectivities of 55.33 and 41.50, respectively. © 2011 American Institute of Chemical Engineers AIChE J, 58: 3167–3175, 2012  相似文献   

3.
The structure and performance of modified poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVdF‐co‐HFP) ultra‐filtration membranes prepared from casting solutions with different concentrations of poly(vinyl pyrrolidone) (PVP) were investigated in this study. Membrane properties were studied in terms of membrane compaction, pure water flux (PWF), water content (WC), membrane hydraulic resistance ( R m), protein rejection, molecular weight cut‐off (MWCO), average pore size, and porosity. PWF, WC, and thermal stability of the blend membranes increased whereas the crystalline nature and mechanical strength of the blend membranes decreased when PVP additive concentration was increased. The contact angle (CA) decreased as the PVP concentration increased in the casting solution, which indicates that the hydro‐philicity of the surface increased upon addition of PVP. The average pore size and porosity of the PVdF‐co‐HFP membrane increased to 42.82 Å and 25.12%, respectively, when 7.5 wt% PVP was blended in the casting solution. The MWCO increased from 20 to 45 kDa with an increase in PVP concentration from 0 to 7.5 wt%. The protein separation study revealed that the rejection increased as the protein molecular weight increased. The PVdF‐co‐HFP/PVP blended membrane prepared from a 7.5 wt% PVP solution had a maximum flux recovery ratio of 74.3%, which explains its better antifouling properties as compared to the neat PVdF‐co‐HFP membrane. POLYM. ENG. SCI., 55:2482–2492, 2015. © 2015 Society of Plastics Engineers  相似文献   

4.
《分离科学与技术》2012,47(8):1933-1954
Abstract

Ultrafiltration techniques have particular advantages for simultaneous purification, concentration, and fractionation of macromolecules. A comparative study is presented on novel ultrafiltration polymeric blend membranes based on cellulose acetate (CA) prepared in the absence and presence of polymeric additives such as polyethylene Glycol 200 (PEG) and polyvinylpyrrolidone (PVP) by phase inversion technique using N,N′-dimethylformamide (DMF) as solvent. Polymer blend composition, additive concentration and casting, and gelation conditions were standardized for the preparation of asymmetric membranes by pore statistics and morphology. These blend membranes were characterized for compaction in ultrafiltration experiments at 414 kPa pressure in order to attain steady state flux and is reached within 4–5 h. The pure water flux was measured at 345 kPa pressure. Membrane hydraulic resistance derived by measuring water flux at various transmembrane pressures and found to be inversely proportional to pure water flux. Water content is estimated by simple drying and weighing procedures and found proportional to pure water flux for all the membranes. The molecular weight cut-offs (MWCOs) of different membranes were determined with proteins of different molecular weights and found to vary from 20 to 69 kDa depending on the PEG 200 and PVP content in the blend in the casting solution. Skin surface porosity of the membranes was analyzed by scanning the samples at various magnifications. The characterized CA, CA/PEG200 and CA/PVP membranes were used for cadmium ion rejection studies at 345 kPa.  相似文献   

5.
Organic/inorganic hybrid silica membranes were prepared from 1,1,3,3‐tetraethoxy‐1,3‐dimethyl disiloxane (TEDMDS) by the sol‐gel technique with firing at 300–550°C in N2. TEDMDS‐derived silica membranes showed high H2 permeance (0.3–1.1 × 10?6 mol m?2 s?1 Pa?1) with low H2/N2 (~10) and high H2/SF6 (~1200) perm‐selectivity, confirming successful tuning of micropore sizes larger than TEOS‐derived silica membranes. TEDMDS‐derived silica membranes prepared at 550°C in N2 increased gas permeances as well as pore sizes after air exposure at 450°C. TEDMDS had an advantage in tuning pore size by the “template” and “spacer” techniques, due to the pyrolysis of methyl groups in air and Si? O? Si bonding, respectively. For pore size evaluation of microporous membranes, normalized Knudsen‐based permeance, which was proposed based on the gas translation model and verified with permeance of zeolite membranes, reveals that pore sizes of TEDMDS membranes were successfully tuned in the range of 0.6–1.0 nm. © 2011 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

6.
Of thermosetting polymers, polyphenylene oxide (PPO) is considered as one of the promising alternative polymeric precursors for carbon membrane preparation. In this study, the PPO derived carbon membranes were prepared by carbonization and followed by air-oxidation as post-treatment method to modify the membrane pore structures. The characterization of the pore properties showed that air-oxidation enlarged the pore structure for the postoxidized carbon materials. The permeation results for the post-oxidized carbon membranes showed that the extent of the permeation modification was strongly dependent on the oxidation temperature. In the binary mixture gas systems, the permeation performance of the adsorbing gas species increased due to the surface diffusion mechanism. It is considered in the oxidation effect on the permeation modification that the post-oxidation of the carbon membranes increased gas permeation and separation properties.  相似文献   

7.
Poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) is a chemically resistant polymer and, therefore, an attractive material for the formation of membranes. However, membranes of unmodified PPO prepared by an immersion precipitation possess very low hydraulic permeabilities at the filtration processes. The membranes with higher hydraulic permeabilities can be prepared from sulfonated PPO and/or from blends of unsulfonated PPO and sulfonated PPO. In conclusion, the mechanism of the formation of membranes from blends of unsulfonated PPO and sulfonated PPO is suggested. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 161–167, 1999  相似文献   

8.
《分离科学与技术》2012,47(8):1261-1271
Membrane composed of PC as base of polymer matrix with different ratio of multiwall carbon nano tubes (MWCNTs) as nanofillers and poly ethylene glycol (PEG) as second polymer was prepared by solution casting method. Both raw-MWCNTs (R-MWCNTs) and functionalized carboxyle-MWCNTs (C-MWCNTs) were used in membrane preparation. The MWCNTs loading ratio and pressure effects on the gas transport properties of membranes were examined in relation to pure He, N2, CH4, and CO2 gases. Results showed that the use of C-MWCNT instead of R-MWCNTs in mixed matrix membranes (MMMs) fabrication with base of PC provides better performance and also it increases (CO2/CH4) and (CO2/N2) selectivities to 27.38 and 25.42 from 25.45 and 19.24, respectively (at 5 wt% of MWCNTs). PEG as the second rubbery polymer was utilized to improve the separation performance and mechanical properties. In blend MMMs, highest (CO2/CH4) selectivity at 2 bar pressure increased to 35.64 for PC/PEG/C-MWCNT blend MMMs which was 27.28 for PC/MWCNTs MMMs at 10 wt%. Increase of feed pressure led to gas permeability and gas pair selectivity improvement in approximately all of membranes. Analysis of mechanical properties showed improvement in tensile modules with the increase of MWCNTs loading ratio and use of PEG in prepared MMMs.  相似文献   

9.
Complete CO2/CH4 gas separation was aimed in this study. Accordingly, asymmetric neat polysulfone (PSF) and PSF/polyvinylpyrrolidone (PVP) blend membranes were prepared by wet/wet phase inversion technique. The effects of two different variables such as type of external nonsolvent and type of solvent on morphology and gas separation ability of neat PSF membranes were examined. Moreover, the influence of PVP concentration on structure, thermal properties, and gas separation properties of PSF/PVP blend membrane were tested. The SEM results presented the variation in membrane morphology in different membrane preparation conditions. Atomic forced microscopic images displayed that surface roughness parameters increased significantly in higher PVP loading and then gas separation properties of membrane improved. Thermal gravimetric analysis confirms higher thermal stability of membrane in higher PVP loading. Differential scanning calorimetric results prove miscibility and compatibility of PSF and PVP in the blend membrane. The permeation results indicate that, the CO2 permeance through prepared PSF membrane reached the maximum (275 ± 1 GPU) using 1‐methyl‐2‐pyrrolidone as a solvent and butanol (BuOH) as an external nonsolvent. While, a higher CO2/CH4 selectivity (5.75 ± 0.1) was obtained using N‐N‐dimethyl‐acetamide (DMAc) as a solvent and propanol (PrOH) as an external nonsolvent. The obtained results show that PSF/PVP blend membrane containing 10 wt % of PVP was able to separate CO2 from CH4 completely up to three bar as feed pressure. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1139‐1147, 2013  相似文献   

10.
Proton-conducting polymer blend electrolytes based on PVA–PVP–NH4NO3 were prepared for different compositions by solution cast technique. The prepared films are investigated by different techniques. The XRD study reveals the amorphous nature of the polymer electrolyte. The FTIR and laser Raman studies confirm the complex formation between the polymer and salt. DSC measurements show decrease in T g with increasing salt concentration. The ionic conductivity of the prepared polymer electrolyte was found by ac impedance spectroscopy analysis. The maximum ionic conductivity was found to be 1.41 × 10?3 S cm?1 at ambient temperature for the composition of 50PVA:50PVP:30 wt% NH4NO3 with low-activation energy 0.29 eV. The conductivity temperature plots are found to follow an Arrhenius nature. The dielectric behavior was analyzed using dielectric permittivity (ε*) and the relaxation frequency (τ) was calculated from the loss tangent spectra (tan δ). Using this maximum ionic conducting polymer blend electrolyte, the primary proton battery with configuration Zn + ZnSO4·7H2O/50PVA:50PVP:30 wt% NH4NO3/PbO2 + V2O5 was fabricated and their discharge characteristics studied.  相似文献   

11.
In this work, a porous polypropylene (PP)/nano carbon black (CB) composite was facilely fabricated via immiscible co-continuous polymer blend and subsequent dissolution process. The porous structure was generated from co-continuous polymer blend, which was exploited as the substrate for depositing nano CB. The interconnected micro pores of the co-continuous polymer blend and nano pores derived from agglomerated CB resulted in a significant enhancement of conductivity. Comparing with the conventional carbon composite obtained through dual-percolation method, the electrical conductivity of PP/CB composite increased 10 orders of magnitude with CB loading ranged from 1 wt% to 5 wt%. Moreover, it was found that the percolation threshold of PP/CB composite decreased nearly 80% compared with that of as-mixed sample. The enhanced conductivity and much lower percolation make this novel method a potential way for fabricating porous conductive materials for advanced application.  相似文献   

12.
Abstract

The surface porosities of carbon fibers derived from the polymer blend fibers of hardwood kraft lignin, HKL and polypropylene, PP, were discussed using thermal analyses, FTIR, and nitrogen adsorption. HKL/PP carbon fibers were prepared by two‐step thermal processing, thermostabilization, and carbonization. During the thermostabilization process, pores are created by oxidative degradation of the PP component. After thermostabilization some crystalline and highly oxidized PP components remained in the blend fiber. These residual PP components were subsequently pyrolyzed during carbonization, and effectively created a porous structure in the resulting carbon fibers. N2 adsorption tests of the porous carbon fibers revealed the same type of adsorption/desorption isotherms as for activated carbon fiber. The internal surface area of the HKL/PP = 62.5/37.5 carbon fibers was calculated to be 499 m2 g?1. This value was lower than that for commercial activated carbon, 745 m2 g?1. However, these porous lignin‐based carbon fibers were not activated carbon fibers, which could be relatively easily done through steam activation. Thus, the HKL/PP blend carbon fibers appear to be promising precursors for activated carbon fibers.  相似文献   

13.
Hydrophilic ultrafiltration membranes have been prepared by blending cellulose acetate (CA) as a matrix polymer with increasing concentrations of poly(vinylpyrrolidone) (PVP) using N,N′‐dimethylformamide as the solvent. It is observed that the presence of PVP beyond 50 wt % in the casting solution did not form membranes. Prepared membranes have been subjected to ultrafiltration characterizations such as compaction, pure water flux, water content, and membrane hydraulic resistance. The results indicate significant changes in the characteristics upon the addition of PVP, which may lead to improved performance. The porosity, pore size, and molecular weight cut‐off of the membranes also increase as the concentration of PVP increases. It is estimated that the pore radius of the CA/PVP membranes increases from 30 to 63 Å, when the concentration of PVP increased from 0 to 50 wt %. This is in agreement with the results obtained from scanning electron microscopic studies. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

14.
Carbon nanotubes with different functional groups were prepared and then incorporated into the poly(2,6‐dimethyl‐1,4‐phenylene oxide)/polyamide 6 (PPO/PA6) blend via melt blending. The influence of different carbon nanotubes on the morphology and properties of the blend was studied. The results show that addition of pristine CNTs, CNTs‐OH, CNTs‐NH2 leads to the evolution of the phase structure of PPO/PA6 (mass ratio: 60/40) blend from sea‐island to cocontinuous, whereas incorporation of CNTs‐COOH does not change the blend morphology due to serious aggregation of the carbon nanotubes. Incorporating different CNTs into PPO/PA6 blend increases the tensile modulus and storage modulus of the blends, whereas decreases slightly the tensile strength. At the same time, the glass transition temperatures (Tg) of PA6 and PPO are enhanced. ΔTg, the gap between the Tg of PA6 and PPO, decreases with the addition of carbon nanotubes due to the stronger interaction of carbon nanotubes with PA6 than PPO. A similar tendency was found in the storage modulus (G′) and complex viscosity (η*) of the composites. The dispersion state of different carbon nanotubes and their interaction with polymer components are different, which causes the different confinement effect to the macromolecular chains. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
Nanofiltration PA6/EVOH membranes were prepared through a nonsolvent induced phase separation technique. The effects of polymer concentration in the solution and solvent evaporation time on the performance and morphology of the resulting membranes were investigated by cloud point titration, permeation, and scanning electron microscopy (SEM). Experimental cloud point data for various prepared membranes suggested that polymer solutions with higher concentrations of PA6/EVOH need a less content of nonsolvent. SEM observations show that an increase in polymer concentration leads to formation of a thin dense layer on the surface of the membrane thanks to pore size reduction. However, dense top layer of membrane becomes thicker as polymer concentration increases from 15 wt% to 20 wt%. The performance of membranes reveals a decrease with polymer concentration in casting solution. By contrast, Polyamide/Poly(ethylene‐co‐vinyl alcohol) membranes show an optimal performance with various formic acid evaporation times. J. VINYL ADDIT. TECHNOL., 25:E28–E34, 2019. © 2018 Society of Plastics Engineers  相似文献   

16.
Carbon hollow fiber membranes (CHFMs) derived from polymer blend of polyetherimide (PEI) and polyvinylpyrrolidone (PVP) were extensively prepared through stabilization under air atmosphere followed by carbonization under N2 atmosphere. The effects of the stabilization temperature on the morphological structure, chemical structure, and gas permeation properties were investigated thoroughly by means of scanning electron microscopy, Fourier transform infrared spectroscopy, and single gas permeation system. The experiment results indicate that the transport mechanism of small gas molecules of N2, CO2, and CH4 is dominated by the molecular sieving effect. Based on morphological structure and gas permeation properties, an optimum stabilization condition for the preparation of CHFM derived from PEI/PVP was found at 300°C under air atmosphere. The selectivity of ?55 and 41 for CO2/CH4 and CO2/N2, respectively, were obtained for CHFMs prepared at stabilization temperature of 300°C. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
Potassium ion-conducting polymer electrolytes based on poly (vinyl pyrrolidone) (PVP) complexed with KClO4 were prepared using a solution cast technique. These samples were characterized using X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Differential Scanning Calorimetry (DSC), and impedance spectroscopy. The complexation of the salt with polymer was confirmed by FT-IR and XRD studies. The ionic conductivity was found to increase with increasing temperature and salt concentration. The highest ionic conductivity (0.91 × 10?5 S/cm) and low activation energy (0.29 eV) was obtained for the polymer complexed with 15 wt% KClO4 among all the compositions.  相似文献   

18.
Bio-compatible polymer blends of poly(2-ethyl-2-oxazoline) [PEOX] and polyvinylpyrro-lidone [PVP] were prepared at various compositions (80:20, 60:40, 40:60, and 20:80 wt%). These polymer blends were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The thermal stability of the blends was evaluated by thermogravimetry. The kinetic parameters such as activation enthalpy, ?H, activation entropy, ?S, and free energy of activation, ?G, were calculated using kinetic model given by Broido for all the blends. The thermal studies show that PEOX: PVP (20:80) blend has good thermal stability compared to other blends. The results show that thermal stability and decomposition temperature of PEOX was considerably improved by the addition of PVP. The electrical and dielectric properties of PEOX:PVP (80:20) blend were measured in the temperature range of 313 K - 353 K using an LCR meter for the frequency range 100 Hz - 8 MHz. The dielectric studies shows that dielectric constant, dielectric loss and electric modulus decreases with frequency and increases with temperature, whereas AC conductivity increases with frequency and temperature.  相似文献   

19.
Chlorinated poly(vinyl chloride) (CPVC)/poly(vinyl pyrrolidone) (PVP) membranes were prepared by using the solvent system tetrahydrofuran (THF)/n‐butyl alcohol (n‐BA) to investigate the possibility of pore size and pore‐size distribution control. The coagulation of CPVC/PVP solution was induced by the exposure to water vapor at 25 (±0.5)°C. The average pore diameter, dp, and the size distribution of pores on the surface of the membrane were quantified through the image analyzer from the images visualized by field emission scanning electron microscope (FE‐SEM). Surface pore size and distribution of the prepared CPVC/PVP membrane were strongly affected by the relative humidity (RH) in the environment and the content of PVP used as an additive. Particularly, in the case of CPVC membrane without PVP, the mean pore size was 0.15–0.2 μm, depending on the RH. The pore distribution became broad with the increase of the RH. The membranes had open pores as confirmed by the hydraulic permeation experiment. In addition, the water flux and membrane resistance (Rm) were greatly affected by the composition of polymer solution and the RH. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1195–1202, 2002  相似文献   

20.
《分离科学与技术》2012,47(14):2199-2210
Hollow fiber poly(vinyl chloride) membranes were prepared by using the dry/wet spinning method. Cross-section, internal, and external surfaces of the hollow fibers structure were studied by SEM. The pore size and pore size distribution of the hollow fibers were measured by a PMI capillary flow porometer. UF experiments of pure water and aqueous solution of PVP K-90 were carried out. The effect of the PVC concentration on the hollow fibers mechanical properties was also investigated. It was found that the PVC fibers cross-sectional structure was affected by the polymer concentration in the dope solution. In particular, reduction of macrovoids size was observed when increasing PVC concentration from 15 to 19 wt%. The pore size distribution of the PVC hollow fibers was controlled by adjusting the PVC concentration. Indeed, an increase of PVC concentration up to 19 wt% leads to fibers with sharp pore size distribution (the 99% of pores is about 0.15 µm).The pure water permeation flux decreased from 162 to 128 (l/m2 · h · bar), while the solute separation performance increased from 82 to 97.5%, when increasing the PVC concentration. The elongation at break, the tensile strength, and the Young's modulus of the PVC hollow fibers were improved with PVC concentration in dope solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号