首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
提出了一种CO2低温捕集液化与N2/O2分离的新型复合系统,并且对该系统的性能以及优势进行了分析。这一系统不仅将CO2低温捕集液化与N2/O2的分离结合起来,而且能达到降低能耗与减少投资的目的。采用理论分析和软件模拟相结合的方法,对该系统进行可行性分析。结果显示,这一新型系统不仅能量消耗低于传统醇胺吸收捕集CO2的系统,该新型复合系统捕集1 t CO2耗能3.29 GJ·t-1,而传统MDEA吸收法耗能4.11 GJ·t-1。而且在该系统中,CO2分离液化的同时,可以获得副产物N2与O2。本研究阐明了一种CO2低温捕集液化与N2/O2分离复合系统的新思想。  相似文献   

2.
This work focuses on the techno-economic assessment of bituminous coal fired sub- and super-critical pulverised fuel boilers from an oxyfuel based CO2 capture point of view. At the initial stage, two conventional power plants with a nominal power output of above 600 MWe based on the above steam cycles are designed, simulated and optimised. Built upon these technologies, CO2 capture facilities are incorporated within the base plants resulting in a nominal power output of 500 MWe. In this manner, some sensible heat generated in the air separation unit and the CO2 capture train can be redirected to the steam cycle resulting in a higher plant efficiency. The simulation results of conventional sub- and super-critical plants are compared with their CO2 capture counterparts to disclose the effect of sequestration on the overall system performance attributes. This systematic approach allows the investigation of the effects of the CO2 capture on both cycles. In the literature, super-critical plants are often considered for a CO2 capture option. These, however, are not based on a systematic evaluation of these technologies and concentrate mainly on one or two key features. In this work several techno-economic plant attributes such as the fuel consumptions, the utility usages, the plant performance parameters as well as the specific CO2 generation and capture rates are calculated and weighed against each other. Finally, an economic evaluation of the system is conducted along with sensitivity analyses in connection with some key features such as discounted cash flow rates, capital investments and plant efficiencies as well as fuel and operating costs.  相似文献   

3.
The 2007 IEA's World Energy Outlook report predicts that the world's energy needs will grow by 55% between 2005 and 2030, with fossil fuels accounting for 84% of this massive projected increase in energy demand. An undesired side effect of burning fossil fuels is carbon dioxide (CO2) emission which is now widely believed to be responsible for the problem of global warming. Various strategies are being considered for addressing the increase in demand for energy and at the same time developing technologies to make energy greener by reducing CO2 emissions.One of these strategies is to ‘capture’ produced CO2 instead of releasing it into the atmosphere. Capturing CO2 and its injection in oil reservoirs can lead to improved oil recovery as well as CO2 retention and storage in these reservoirs. The technology is referred to as CCS (carbon capture and storage). Large point sources of CO2 (e.g., coal-fired power plants) are particularly good candidates for capturing large volumes of CO2. However, CO2 capture from power plants is currently very expensive. In addition to high costs of CO2 capture, the very low pressure of the flue gas (1 atm) and its low CO2 content (typically 10-15%) contribute to the high cost of CO2 capture from power plants and the subsequent compression. This makes conventional CO2 flooding (which requires very large volumes of CO2) uneconomical in many oil reservoirs around the world which would otherwise be suitable candidates for CO2 injection. Alternative strategies are therefore needed to utilize smaller sources of CO2 that are usually available around oil and gas fields and can be captured at lower costs (due to their higher pressure and higher CO2 concentration).We investigate the potential of carbonated (CO2-enriched) water injection (CWI) as an injection strategy for improving recovery from oil reservoirs with the added benefit of safe storage of CO2. The performance of CWI was investigated by conducting high-pressure flow visualization as well as coreflood experiments at reservoir conditions. The results show that CWI significantly improves oil recovery from water flooded porous media. A relatively large fraction of the injected CO2 was retained (stored) in the porous medium in the form of dissolved CO2 in water and oil. The results clearly demonstrate the huge potential of CWI as a productive way of utilizing CO2 for improving oil recovery and safe storage of potentially large cumulative quantities of CO2.  相似文献   

4.
《分离科学与技术》2012,47(10):1385-1394
Carbon dioxide capture and storage (CCS) has been propounded as an important issue in greenhouse gas emissions control. In this connection, in the present article, the advantages of using polymeric membrane for separation of carbon dioxide from CO2/N2 streams have been discussed. A novel composition for fabrication of a blend membrane prepared from acrylonitrile-butadiene-styrene (ABS) terpolymer and polyethylene glycol (PEG) has been suggested. The influence of PEG molecular weight (in the range of 400 to 20000) on membrane characteristics and gas separation performance, the effect of PEG content (0–30 wt%) on gas transport properties, and the effect of feed side pressure (ranging from 1 to 8 bar) on CO2 permeability have been studied. The results show that CO2 permeability increases from 5.22 Barrer for neat ABS to 9.76 Barrer for ABS/PEG20000 (10 wt%) while the corresponding CO2/N2 selectivity increases from 25.97 to 44.36. Furthermore, it is concluded that this novel membrane composition has the potential to be considered as a commercial membrane.  相似文献   

5.
The techno-economic evaluation of four novel integrated gasification combined cycle (IGCC) power plants fuelled with low rank lignite coal with CO2 capture facility has been investigated using ECLIPSE process simulator. The performance of the proposed plants was compared with two conventional IGCC plants with and without CO2 capture. The proposed plants include an advanced CO2 capturing process based on the Absorption Enhanced Reforming (AER) reaction and the regeneration of sorbent materials avoiding the need for sulphur removal component, shift reactor and/or a high temperature gas cleaning process. The results show that the proposed CO2 capture plants efficiencies were 18.5–21% higher than the conventional IGCC CO2 capture plant. For the proposed plants, the CO2 capture efficiencies were found to be within 95.8–97%. The CO2 capture efficiency for the conventional IGCC plant was 87.7%. The specific investment costs for the proposed plants were between 1207 and 1479 €/kWe and 1620 €/kWe and 1134 €/kWe for the conventional plants with and without CO2 capture respectively. Overall the proposed IGCC plants are cleaner, more efficient and produce electricity at cheaper price than the conventional IGCC process.  相似文献   

6.
Hydrate additives can be used to mitigate hydrate formation conditions, promote hydrate growth rate and improve separation efficiency. CO2 + N2 and CO2 + CH4 systems with presence of sodium dodecyl sulfate (SDS) or tetrahydrofuran (THF) are studied to analyze the effect of hydrate additives on gas separation performance. The experiment results show that CO2 can be selectively enriched in the hydrate phase. SDS can speed up the hydrate growth rate by facilitating gas molecules solubilization. When SDS concentration increases, split and loss fraction increase initially and then decrease slightly, resulting in a decreased separation factor. The optimum concentration of SDS exists at the range of 100–300 ppm. As THF can be easily encaged in hydrate cavities, hydrate formation condition can be mitigated greatly with its existence. Additionally, THF can also strengthen hydrate formation. The THF effect on separation performance is related to feed gas components. CO2 occupies the small cavities of type II hydrate prior to N2. But the competitiveness of CO2 and CH4 to occupy cavities are quite fair. The variations of split fraction, loss fraction and separation factor depend on the concentration of THF added. The work in this paper has a positive role in flue gas CO2 capture and natural gas de-acidification.  相似文献   

7.
In the work presented in this paper, an alternative process concept that can be applied as retrofitting option in coal-fired power plants for CO2 capture is examined. The proposed concept is based on the combination of two fundamental CO2 capture technologies, the partial oxyfuel mode in the furnace and the post-combustion solvent scrubbing. A 330 MWel Greek lignite-fired power plant and a typical 600 MWel hard coal plant have been examined for the process simulations. In a retrofit application of the ECO-Scrub technology, the existing power plant modifications are dominated by techno-economic restrictions regarding the boiler and the steam turbine islands. Heat integration from processes (air separation, CO2 compression and purification and the flue gas treatment) can result in reduced energy and efficiency penalties. In the context of this work, heat integration options are illustrated and main results from thermodynamic simulations dealing with the most important features of the power plant with CO2 capture are presented for both reference and retrofit case, providing a comparative view on the power plant net efficiency and energy consumptions for CO2 capture. The operational characteristics as well as the main figures and diagrams of the plant’s heat balances are included.  相似文献   

8.
C.F. Martín 《Fuel》2011,90(5):2064-556
Different types of phenolic resins were used as precursor materials to prepare adsorbents for the separation of CO2 in pre-combustion processes. In order to obtain highly microporous carbons with suitable characteristics for the separation of CO2 and H2 under high pressure conditions, phenol-formaldehyde resins were synthesised under different conditions. Resol resins were obtained by using an alkaline environment while Novolac resins were synthesised in the presence of acid catalysts. In addition, two organic additives, ethylene glycol (E) and polyethylene glycol (PE) were included in the synthesis. The phenolic resins thus prepared were carbonised at different temperatures and then physically activated with CO2. The carbons produced were characterised in terms of texture, chemical composition and surface chemistry. Maximum CO2 adsorption capacities at atmospheric pressure were determined in a thermogravimetric analyser. Values of up to 10.8 wt.% were achieved. The high-pressure adsorption of CO2 at room temperature was determined in a high-pressure magnetic suspension balance. The carbons tested showed enhanced CO2 uptakes at high pressures (up to 44.7 wt.% at 25 bar). In addition, it was confirmed that capture capacities depend highly on the microporosity of the samples, the narrow micropores (pore widths of less than 0.7 nm) being the most active in CO2 adsorption at atmospheric pressure. The results presented in this work suggest that phenol-formaldehyde resin-derived activated carbons, particularly those prepared with the addition of ethylene glycol, show great potential as adsorbents for pre-combustion CO2 capture.  相似文献   

9.
A new regenerable alumina-modified sorbent was developed for CO2 capture at temperatures below 200 °C. The CO2 capture capacity of a potassium-based sorbent containing Al2O3 (KAlI) decreased during multiple CO2 sorption (60 °C) and regeneration (200 °C) tests due to the formation of the KAl(CO3)(OH)2 phase, which could be converted into the original K2CO3 phase above 300 °C. However, the new regenerable potassium-based sorbent (Re-KAl(I)) maintained its CO2 capture capacity during multiple tests even at a regeneration temperature of 130 °C. In particular, the CO2 capture capacity of the Re-KAl(I)60 sorbent which was prepared by the impregnation of Al2O3 with 60 wt.% K2CO3 was about 128 mg CO2/g sorbent. This excellent CO2 capture capacity and regeneration property were due to the characteristics of the Re-KAl(I) sorbent producing only a KHCO3 phase during CO2 sorption, unlike the KAlI30 sorbent which formed the KHCO3 and KAl(CO3)(OH)2 phases even at 60 °C. This result was explained through the structural effect of the support containing the KAl(CO3)(OH)2 phase which was prepared by impregnation of Al2O3 with K2CO3 in the presence of CO2.  相似文献   

10.
To demonstrate process feasibility of in situ CO2 capture from combustion of fossil fuels using Ca-based sorbent looping technology, a flexible atmospheric dual fluidized bed combustion system has been constructed. Both reactors have an ID of 100 mm and can be operated at up to 1000 °C at atmospheric pressure. This paper presents preliminary results for a variety of operating conditions, including sorbent looping rate, flue gas stream volume, CaO/CO2 ratio and combustion mode for supplying heat to the sorbent regenerator, including oxy-fuel combustion of biomass and coal with flue gas recirculation to achieve high-concentration CO2 in the off-gas. It is the authors' belief that this study is the first demonstration of this technology using a pilot-scale dual fluidized bed system, with continuous sorbent looping for in situ CO2 capture, albeit at atmospheric pressure. A multi-cycle test was conducted and a high CO2 capture efficiency (> 90%) was achieved for the first several cycles, which decreased to a still acceptable level (> 75%) even after more than 25 cycles. The cyclic sorbent was sampled on-line and showed general agreement with the features observed using a lab-scale thermogravimetric analysis (TGA) apparatus. CO2 capture efficiency decreased with increasing number of sorbent looping cycles as expected, and sorbent attrition was found to be another significant factor to be limiting sorbent performance.  相似文献   

11.
Environmental legislation, with its increasing pressure on the energy sector to control greenhouse gases, is a driving force to reduce CO2 emissions. In this paper, pre-combustion CO2 capture through integration of a site utility system with an integrated gasification combined cycle (IGCC) is investigated as an option to provide a compressed CO2-rich stream from a process site for sequestration. This work presents a two-step procedure for integration and optimization of a site utility system with an IGCC plant: (i) screening and optimization of IGCC plant performance parameters; (ii) integration and optimization of the utility system of the site with the IGCC plant. In the first step, an optimization approach applies the results of screening studies based on rigorous simulation of the IGCC. Having fixed the inlet fuel flow rate, the IGCC design parameters (including oxygen consumption, diluent flow rate and turbine exit pressure) are optimized for maximum power generation. Energy flows between the IGCC and CO2 compression train are considered. In the second step, the economic and operating performance of the utility system integrated with the IGCC plant are modeled and optimized for minimum operating cost to find the most appropriate level of integration. In a case study illustrating the approach, 94% of the fuel is gasified; additional power generation offsets the operating costs of pre-combustion CO2 capture.  相似文献   

12.
TETA or TETA-AEP mixtures were used as an activator to enhance CO2 capture in the MDEA solution. The effect of amount and type of activators, and the viscosity of absorbents on CO2 capture were discussed. The results showed that the positive effect of TETA-AEP mixtures on CO2 capture in the MDEA solution was greater than that of TETA. The optimal absorbent was No. V, whose CO2 absorption capacity/desorption efficiency was 3.08 times/1.18 times of No. ?. The viscosity had a little influence on CO2 absorption and an obvious effect on CO2 desorption.  相似文献   

13.
The relation between anthropogenic emissions of CO2 and its increased levels in the atmosphere with global warming and climate change has been well established and accepted. Major portion of carbon dioxide released to the atmosphere, originates from combustion of fossil fuels. Integrated gasification combined cycle (IGCC) offers a promising fossil fuel technology considered as a clean coal-based process for power generation particularly if accompanied by precombustion capture. The latter includes separation of carbon dioxide from a synthesis gas mixture containing 40 mol% CO2 and 60 mol% H2.A novel approach for capturing CO2 from the above gas mixture is to use gas hydrate formation. This process is based on selective partition of CO2 between hydrate phase and gas phase and has already been studied with promising results. However high-pressure requirement for hydrate formation is a major problem.We have used semiclathrate formation from tetrabutylammonium bromide (TBAB) to experimentally investigate CO2 capture from a mixture containing 40.2 mol% of CO2 and 59.8 mol% of H2. The results shows that in one stage of gas hydrate formation and dissociation, CO2 can be enriched from 40 mol% to 86 mol% while the concentration of CO2 in equilibrium gas phase is reduced to 18%. While separation efficiency of processes based on hydrates and semi-clathrates are comparable, the presence of TBAB improves the operating conditions significantly. Furthermore, CO2 concentration could be increased to 96 mol% by separating CO2 in two stages.  相似文献   

14.
David Grainger 《Fuel》2008,87(1):14-24
Published data for an operating power plant, the ELCOGAS 315 MWe Puertollano plant, has been used as a basis for the simulation of an integrated gasification combined cycle process with CO2 capture. This incorporated a fixed site carrier polyvinylamine membrane to separate the CO2 from a CO-shifted syngas stream. It appears that the modified process, using a sour shift catalyst prior to sulphur removal, could achieve greater than 85% CO2 recovery at 95 vol% purity. The efficiency penalty for such a process would be approximately 10% points, including CO2 compression. A modified plant with CO2 capture and compression was calculated to cost €2320/kW, producing electricity at a cost of 7.6 € cents/kWh and a CO2 avoidance cost of about €40/tonne CO2.  相似文献   

15.
In the present study, the carbonation reaction of hydrated lime in semi-dry condition is investigated experimentally in a laboratory-scale spouted bed reactor. Results show that for operating conditions where the concentration of CO2 is low, the capture efficiency is raised by increasing the inlet CO2 concentration. Additionally, because of the inconsistency between the experimental reaction rate and the calculated values based on the previous proposed equations, a new rate equation is introduced that considers the dependency of CO2 concentration too. To validate the proposed equation, its predictions were compared with another set of experimental data.  相似文献   

16.
The separation of CO2/CH4 is reported in detail by using zeolitic imidazolate framework (ZIF-8) membrane which was prepared on 3-aminopropyltriethoxysilane modified Al2O3 tube through microwave heating synthesis. Attributed to the preferential adsorption affinity of CO2 over CH4 and a narrow pore window of 0.34 nm, the ZIF-8 membrane shows high separation performances for the separation of CO2/CH4 mixtures. For the separation of equimolar CO2/CH4 mixture at 100°C and 2 bar feed (1 bar permeate) pressure, a CO2 permeance of 1.02 × 10?8 mol/m2· s· Pa and a CO2/CH4 selectivity of 6.8 are obtained, which is promising for CO2 separation.  相似文献   

17.
Plasticization phenomena can significantly reduce the performance of polymeric membranes in high-pressure applications. Polyetherimides (PEIs) are a promising group of membrane materials that combine relatively high CO2/CH4 selectivities with high chemical and thermal stability. In this work sorption, swelling, and mixed gas separation performance of 3,3′,4,4′-oxydiphthalic dianhydride (ODPA)-based PEI polymers, with 1, 2 or 3 para-aryloxy substitutions in the diamine moeiety, is investigated under conditions where commercial membranes suffer from plasticization. Particular focus is on the influence of the amount of para-aryloxy substitutions and the film thickness. Results are compared with those of commercially available polymeric membrane materials (sulphonated PEEK, a segmented block-co-polymer PEBAX and the polyimide Matrimid).The glassy polymers display increasing CO2 sorption with increasing Tg. The larger extent of sorption results from a larger non-equilibrium excess free volume. Swelling of the polymers is induced by sorption of CO2 molecules in the non-equilibrium free volume as well as from molecules dissolved in the matrix. Dilation of the polymer is similar for each molecule sorbed. Correspondingly, the partial molar volume of CO2 is similar for molecules present in both regions.Mixed gas separation experiments with a 50/50% CO2/CH4 feed gas mixture showed high CO2/CH4 selectivities for the ODPA PEI films at elevated pressure. This shows that these materials could potentially be interesting for high-pressure gas separation applications, although additional gas permeation experiments using different feed gas compositions and thin films are required.  相似文献   

18.
Vasilije Manovic 《Fuel》2011,90(1):233-239
CaO-based pellets supported with aluminate cements show superior performance in carbonation/calcination cycles for high-temperature CO2 capture. However, like other CaO-based sorbents, their CO2 carrying activity is reduced after increasing numbers of cycles under high-temperature, high-CO2 concentration conditions. In this work the feasibility of their reactivation by steam or water and remaking (reshaping) was investigated. The pellets, prepared from three limestones, Cadomin and Havelock (Canada) and Katowice (Poland, Upper Silesia), were tested in a thermogravimetric analyzer (TGA). The cycles were performed under realistic CO2 capture conditions, which included calcination in 100% CO2 at temperatures up to 950 °C. Typically, after 30 cycles, samples were hydrated for 5 min with saturated steam at 100 °C in a laboratory steam reactor (SR). Moreover, larger amounts of pellets were cycled in a tube furnace (TF), hydrated with water and reshaped, and tested to determine their CO2 capture activity in the TGA. It was found that, after the hydration stage, pellets recovered their activity, and more interestingly, pellets that had experienced a longer series of cycles responded more favorably to reactivation. Moreover, it was found that conversion of pellets increased after about 70 cycles (23%), reaching 33% by about cycle 210, with no reactivation step. Scanning electron microscope (SEM) analyses showed that the morphology of the low-porosity shell formed at the pellet surface during cycles, which limits conversion, was eliminated after a short period (5 min) of steam hydration. The nitrogen physisorption analyses (BET, BJH) of reshaped spent pellets from cycles in the TF confirmed that sorbent surface area and pore size distribution were similar to those of the original pellets. The main alumina compound in remade pellets as determined by XRD was mayenite (Ca12Al14O33). These results showed that, with periodic hydration/remaking steps, pellets can be used for extended times in CO2 looping cycles, regardless of capture/regeneration conditions.  相似文献   

19.
In the CO2 capture process from coal-derived flue gas where amine solvents are used, the flue gas can entrain small liquid droplets into the gas stream leading to emission of the amine solvent. The entrained drops, or mist, will lead to high solvent losses and cause decreased CO2 capture performance. In order to reduce the emissions of the fine amine droplets from CO2 absorber, a novel method using charged colloidal gas aphron (CGA) generated by an anionic surfactant was developed. The CGA absorption process for MEA emission reduction was optimized by investigating the surfactant concentration, stirring speed of the CGA generator, and capture temperature. The results show a significant reduction of MEA emissions of over 50% in the flue gas stream exiting the absorber column of a pilot scale CO2 capture unit.  相似文献   

20.
This project is a trial conducted under contract with CO2CRC, Australia of a new CO2 capture technology that can be applied to integrated gasification combined cycle power plants and other industrial gasification facilities. The technology is based on combination of two low temperature processes, namely cryogenic condensation and the formation of hydrates, to remove CO2 from the gas stream. The first stage of this technology is condensation at −55 °C where CO2 concentration is expected to be reduced by up to 75 mol%. Remaining CO2 is captured in the form of solid hydrate at about 1 °C reducing CO2 concentration down to 7 mol% using hydrate promoters. This integrated cryogenic condensation and CO2 hydrate capture technology hold promise for greater reduction of CO2 emissions at lower cost and energy demand. Overall, the process produced gas with a hydrogen content better than 90 mol%. The concentrated CO2 stream was produced with 95-97 mol% purity in liquid form at high pressure and is available for re-use or sequestration. The enhancement of carbon dioxide hydrate formation and separation in the presence of new hydrate promoter is also discussed. A laboratory scale flow system for the continuous production of condensed CO2 and carbon dioxide hydrates is also described and operational details are identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号