首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《分离科学与技术》2012,47(15):3391-3418
Abstract

Hazardous metal cations enter water through the natural geochemical route or from the industrial wastes. Their separation and removal can be achieved by adsorptive accumulation of the cations on a suitable adsorbent. In the present work, toxic Co(II) ions are removed from water by accumulating them on the surface of clay minerals. Clay adsorbents are obtained from kaolinite, montmorillonite, and their acid activated forms, and are characterized with the measurement of XRD patterns, specific surface area, and cation exchange capacity. The adsorption experiments are carried out in a batch process in environments of different pH, initial Co(II) concentration, amount of clay, interaction time, and temperature. Adsorption of Co(II) on the clays increases continuously from pH 1.0 to 8.0 after which adsorption could not be carried out due to the decreasing solubility of Co(II). Under appropriate conditions, the adsorption of Co(II) is very fast at low coverage approaching equilibrium within 240 min and the interactions are best described by second order kinetics. Langmuir monolayer capacity has been computed in the range of 11.2 to 29.7 mg/g and Co(II) accumulation has the order of acid‐activated montmorillonite>montmorillonite>acid activated kaolinite>kaolinite. Adsorption of Co(II) on kaolinite and acid‐activated kaolinite is endothermic driven by entropy increase but the same process follows exothermically on montmorillonite and acid‐activated montmorillonite supported by entropy decrease. In both cases, spontaneous adsorptive accumulation is ensured by favorable Gibbs energy decrease. It is found that acid activation enhances the adsorption capacity of kaolinite and montmorillonite.  相似文献   

2.
Kaolinite and montmorillonite were modified with tetrabutylammonium (TBA) bromide, followed by calcination. The structural changes were monitored with XRD, FTIR, surface area and cation exchange capacity measurements. The modified clay minerals were used for adsorption of Fe(III), Co(II) and Ni(II) ions from aqueous solution under different conditions of pH, time and temperature. The uptake of the metal ions took place by a second order kinetics. The modified montmorillonite had a higher adsorption capacity than the corresponding kaolinite. The Langmuir monolayer capacities for the modified kaolinite and montmorillonite were Fe(III): 9.3 mg g− 1 and 22.6 mg g− 1; Co(II): 9.0 mg g− 1 and 22.3 mg g− 1; and Ni(II): 8.4 mg g− 1 and 19.7 mg g− 1. The modified kaolinite interacted with Co(II) in an endothermic manner, but all the other interactions were exothermic. The decrease of the Gibbs energy in all the cases indicated spontaneous adsorption.  相似文献   

3.
Clays, acid-activated to an optimum level, have been pillared with alumina to give semi-crystalline expanded materials with surface acidities, pore volumes and average pore diameters generally higher than those of the corresponding pillared materials derived from a clay matrix not previously acid-activated. The chlorophyll adsorption capacity of the pillared acid-activated materials is significantly greater than that of pillared, nonactivated clays. The procedures used in the preparation of these pillared acid-activated clays (i.e., temperature of pillaring, method of drying and calcination temperature) have a significant influence on chlorophyll adsorption capacity because they influence both the physical and the chemical properties of the final pillared material. This variation provides a useful means of relating the various properties of the pillared materials to the chlorophyll adsorption capacity. As a result, a correlation has been demonstrated between adsorption capacity and a combination of pore volume and number of strong acid sites (of strength pKa < −1.5) present in the pillared material. Optimal adsorbents were obtained from freeze-dried samples prepared by exchange at 20°C and calcination in air at 500°C.  相似文献   

4.
《分离科学与技术》2012,47(10):1602-1614
Toxic methylene blue dye is removed from water by accumulating it on the surface of clay minerals. Clay adsorbents are obtained from kaolinite, montmorillonite, and their acid activated forms. The adsorption experiments are carried out in a batch process in environments of different pH, initial dye concentration, amount of clay, interaction time, and temperature. Adsorption of dye is best described by second order kinetics. In the temperature range of 303 to 333 K, the Langmuir monolayer capacity for three kaolinite species increased from 45.5 to 56.5 mg g?1, 45.9 to 57.8 mg g?1, 46.3 to 58.8 mg g?1, and for three montmorillonites species from 163.9 to 181.8 mg g?1, 166.7 to 188.8 mg g?1, and 172.4 to 192.3 mg g?1. The interaction is an endothermic process driven by entropy increase and spontaneous adsorptive accumulation is ensured by favorable Gibbs energy decrease. It is found that acid activation enhances the adsorption capacity of kaolinite and montmorillonite.  相似文献   

5.
《分离科学与技术》2012,47(5):635-642
In this study, the influence of pH, electrolyte concentration, and type of ionic species on the electrokinetic properties (zeta potential and electrokinetic charge density) of the acid-activated montmorillonite mineral have been investigated using the microelectrophoresis method. The electrokinetic properties of acid-activated montmorillonite dispersions have been determined in aqueous solutions of mono-, di-, and trivalent salts and divalent heavy metal salts. Zeta potential experiments have been performed to determine the point of zero charge (pzc) and potential determining ions (pdi). The zeta potential values of the acid-activated montmorillonite particles were negative and did not vary significantly within the pH range studied. Acid-activated montmorillonite dispersions do not have point of zero charge (pzc). The valence of the electrolytes has a great influence on the electrokinetic behavior of the suspension. A gradual decrease in the zeta potential (from ?25 mV to ?5 mV) occurs with the monovalent electrolytes when concentration increased. Divalent and heavy metal electrolytes have less negative z-potentials due to the higher valence of ions. A sign reversal of z-potential has been observed at AlCl3, FeCl3, and CrCl3 electrolytes (potential determining ions) and zeta potential values have had a positive sign at high electrolyte concentrations.

The electrokinetic charge density of acid-activated montmorillonite has shown similar trends for variation in mono- and divalent electrolyte solutions. Up to concentrations of ca. 10?3 M, it has remained practically constant at approximately 0.5 × 10?3 C m?2 For higher concentrations of monovalent electrolytes more negative values (?16 × 10?3 C m?2) were observed. It has less negative values in divalent electrolyte concentrations according to monovalent electrolytes (?5 × 10?3 C m?2). For low concentrations of trivalent electrolytes, the electrokinetic charge density of montmorillonite particles is constant, but at certain concentrations it rapidly increased and changed its sign to positive.  相似文献   

6.
Pb(II) adsorption was studied under different conditions (pH, time, metal ion concentration, clay amount, temperature) on kaolinite, montmorillonite, and their poly(hydroxo)zirconium (ZrO–kaolinite, ZrO–montmorillonite) and tetrabutylammonium (TBA–kaolinite, TBA–montmorillonite) derivatives. All samples were calcined (ZrO-derivatives at 773 K, TBA-derivatives at 973 K) before using as adsorbents. The data were interpreted assuming first- and second-order kinetics. The rate constants including the pore diffusion rate constant are reported. The adsorption data could be fitted with Freundlich and Langmuir isotherms, and the coefficients indicated favorable adsorption of Pb(II) on the clays. Determination of the thermodynamic parameters, ΔH, ΔS, and ΔG showed the adsorption to be exothermic accompanied by decrease in entropy and Gibbs energy.  相似文献   

7.
《分离科学与技术》2012,47(3):579-590
Abstract

Adsorption gel was prepared from waste recycled paper by immobilizing iminodiacetic acid (IDA) functional group by chemical modification. The gel exhibited good adsorption behavior for a number of metal ions viz. Cu(II), Pb(II), Fe(III), Ni(II), Cd(II), and Co(II) at acidic pH. The order of selectivity was found to be as follows: Cu(II)>Pb(II)>Fe(III)>Ni(II)~Cd(II)~Co(II). From the adsorption isotherms, the maximum adsorption capacity of the gel for both Cu(II) and Pb(II) was found to be 0.47 mol/kg whereas that for Cd(II) was 0.24 mol/kg. A continuous flow experiment for Cd(II) showed that the gel can be useful for pre‐concentration and complete removal of Cd(II) from aqueous solution.  相似文献   

8.
《分离科学与技术》2012,47(4):533-544
This work addresses the preparation and characterization of inexpensive adsorbents for the removal of Ni (II) from aqueous solutions. Activated carbon based adsorbents have been prepared from plant based biomass resources, namely Pineapple stem ( Ananas Comosus ) and Bamboo Stem ( Bambuseae ). Adopting phosphoric acid and heat treatment techniques, it has been observed that the bamboo stem activated charcoal (BSAC) and pineapple stem (PS) adsorbents had a BET surface area of 116 and 11.47 m 2 /g, respectively. FTIR analysis indicated that various surface functional groups (such as C ≡ N stretching, stretching vibration of C = O, –CH3 wagging and C–O stretching vibration) contribute towards Ni (II) adsorption. Batch mode adsorption experiments were conducted for these adsorbents in the range of 50–300 mg/L Ni (II) solution concentration, 2–10 pH, 15–300 min. contact time, and 0.02–0.1 g/50 mL dosage. The BSAC adsorbent has been characterized with a metal uptake and %removal of 121.72 mg/g and 92.47, respectively, which corresponds to 45% higher metal uptake than corresponding bamboo based adsorbents presented in the literature. Further experimentation with BSAC enabled to achieve activated charcoal with surface area values similar to that of the commercial activated carbon adsorbent. The bamboo adsorbent has also been evaluated to perform similar to the commercial activated carbon for the removal and recovery of Pd (II) from synthetic electroless plating solutions. Also, a conceptual cost analysis indicated and affirmed towards the potential of the BSAC adsorbents for waste water treatment applications.  相似文献   

9.
《分离科学与技术》2012,47(15):3149-3165
Abstract

Biosorption of nickel (II) and copper (II) ions from aqueous solution by dead sphaeroplea algae in natural and acid treated forms were studied as a function of concentration, pH, and adsorbent dose. The optimum pH for nickel (II) and copper (II) biosorption was found to be 6.0 and 4.0 respectively. The metal ion uptake increased with initial metal ion concentration studied up to 500 mg/L. Both the Freundlich and Langmuir adsorption models could fit the equilibrium data. The adsorption reasonably fitted the Lagergren kinetic model. Further the biomass was characterized by FTIR spectra. Surface area values are measured to be 0.9 and 2.1 m2/g for natural and acid treated forms respectively. The maximum adsorption capacity was found to be 3.40, 4.15 mmol/g for nickel (II) and 2.21, 3.41 mmol/g for copper (II) in natural and acid treated forms respectively.  相似文献   

10.
Soil and water near a spent potliner (SPL) landfill are often found to be highly contaminated with fluoride and ferrocyanide. The liner system, composed of kaolinite and montmorillonite, provides the primary attenuation mechanism for the risk of soluble ferrocyanide and fluoride in the leachate from a SPL landfill. The adsorption of ferrocyanide and fluoride by montmorillonite and kaolinite was investigated in both a single and a binary solute system as a function of the aqueous pH. The adsorption of both solutes was highly pH-dependent, and competed with each of the two liner minerals. In the single solute–montmorillonite system, the adsorption was higher under acidic pH conditions and lower under alkaline pH conditions. For the single solute–kaolinite system, the maximum adsorption appeared near pKa value of the edge functional group. In the binary solute system, the adsorption of solute appeared to be suppressed by the presence of a counterpart, and the competitive adsorption becomes less significant with increasing pH where both adsorptions were minimal. As a result, increasing aqueous pH and the presence of a competitor in SPL-induced leachate can mitigate the attenuation capacity provided by the liner system, thereby, enhancing the leachability of ferrocyanide and fluoride from SPL landfill sites.  相似文献   

11.
A series of adsorption studies was carried out on a glycidyl methacrylate‐ modified cellulose material functionalised with imidazole (Cellulose‐g‐GMA‐Imidazole) to assess its capacity in the removal of Ni(II) ions from aqueous solution. The study sought to establish the effect of a number of parameters on the removal of Ni(II) from solution by the Cellulose‐g‐GMA‐Imidazole. In particular, the influence of initial metal concentration, contact time, solution temperature and pH were assessed. The studies indicated a Ni(II) uptake on the Cellulose‐g‐GMA‐Imidazole sorbent of approximately 48 mg g?1 of nickel from aqueous solution. The adsorption process fitted the Langmuir model of adsorption and the binding process was mildly endothermic. The kinetics of the adsorption process indicated that nickel uptake occurred within 400 min and that pseudo‐second order kinetics best describe the overall adsorption process. Nickel(II) adsorption, recovery and re‐adsorption studies indicated that at highly acidic pH values the adsorbent material becomes unstable, but in the range pH 3–6, the adsorbent is stable and shows limited but significant Ni(II) recovery and re‐adsorption capability. Copyright © 2006 Society of Chemical Industry  相似文献   

12.
This paper assesses the potential of modified montmorillonite clays as low‐cost adsorbents/ion‐exchangers for the removal of trace level heavy metals (Cd, Cu, Ni, Pb and Zn) from potable water. Modification of the montmorillonites resulted in the exchange of the interlayer calcium ions for the polymeric species. One unmodified montmorillonite and three polymeric Fe‐ and Al‐modified montmorillonites have been evaluated with respect to their selectivity and uptake performance. All of the clays are selective for Pb and Cu adsorption from aqueous solutions at the mildly acidic pH range in which the experiments were performed (pH 5.5–6). Polymeric iron‐ and polymeric Al/Fe‐modified clays had comparatively great affinities for all the metals studied, whilst the original and polymeric Al modified clays had relatively lower affinities. Only the uptake of Pb and Cu could be correlated with physical properties such as clay surface area. The metal selectivity could be correlated to the type of intercalated polymeric Fe and Al species of the modified clays. © 2002 Society of Chemical Industry  相似文献   

13.
The natural local deposits of montmorillonite‐illite type of clay (MIC) were susceptible for acid activation. Raw clay was taken for experimentation, disintegrated on acid activation with sulfuric acid, which showed a particle size distribution. The montmorillonite and illite phases in the raw clay disappeared on acid activation and the activated clay, MIC(AA), showed with sodium‐aluminum‐silicate and beidellite phases apart from quartz (low) phase. The raw and acid‐activated clays were characterized using X‐ray powder diffractometry, X‐ray fluorescence, Fourier transform infrared spectrometry, and energy dispersive X‐ray, and their adsorption capacities were compared. When tested for adsorption of Pb(II) in aqueous solutions, the acid‐activated clay showed about 50% increased adsorption than raw clay. Sips adsorption isotherm and pseudo‐second‐order kinetic models were found to be best for the batch adsorption data. Kinetic studies showed the existence of film diffusion and intraparticle diffusion. A two‐stage batch adsorber was designed for the removal of Pb(II) from aqueous solutions. © 2010 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

14.
This article deals with the adsorption of Hg(II) ions from aqueous solution on biocompatible polymeric polypyrrole-chitosan (PPy/CTN) nanocomposite. The Hg(II) uptake of PPy/CTN was quantitatively evaluated using sorption isotherms. In order to describe the isotherm mathematically, the experimental data of the removal equilibrium were correlated by either the Langmuir, Freundlich and Temkin equations. Results indicated that the Langmuir model gave a better fit to the experimental data than the other two equations. The adsorption capacity (qmax) of PPy/CTN for Hg(II) ions in terms of monolayer adsorption was 40 mg/g.  相似文献   

15.
ABSTRACT

Phosphoric acid-activated peanut shells (PS) were prepared by hydrothermal treatment at 200–800 °C and denoted as peanut shell-activated carbons (PACs). The PACs were characterized as adsorbent for removing U(VI) from aqueous solutions. The U(VI) adsorption on PACs follows the pseudo-second-order kinetic equation and the Langmuir model. The adsorption capacity depends on solution pH and ionic strength and PAC-800 exhibits the highest adsorption capacity. The increasing U(VI) adsorption could be attributed to C = OOH groups and delocalized π electrons as sorption sites by surface complexation and ion exchange. Therefore, PACs as economic adsorbents could potentially remove U(VI) from aqueous solutions.  相似文献   

16.
In the present study, the As(V) removal efficiency of different clay minerals was investigated as a function of solution pH, time, As(V) concentration, and temperature. Arsenic mobility was also investigated by determining the As(V) released from the loaded samples by leaching with various aqueous solutions. The kinetics of adsorption was observed to be fast and reached equilibrium within 3 h. As(V) adsorption on studied clays was pH dependent and maximum adsorption was achieved at pH 5.0. The maximum adsorption capacity was calculated by fitting the Langmuir equation to the adsorption isotherms and found to be 0.86, 0.64, and 0.52 mg As(V)/g of kaolinite, montmorillonite, and illite, respectively. The negative effect of temperature on As(V) adsorption showed the interactions to be exothermic. Based on the results, it was found that among the studied clay minerals, kaolinite was the best As(V) adsorbent and montmorillonite had strong retention capacity. The electrokinetic behavior of kaolinite and montmorillonite was modified in the presence of As(V), indicating that adsorption involves inner sphere surface complexation and strong specific ion adsorption.  相似文献   

17.
Adsorption of metals by clay minerals is a complex process controlled by a number of environmental variables. The present work investigates the removal of Cu(II) ions from an aqueous solution by kaolinite, montmorillonite, and their poly(oxo zirconium) and tetrabutylammonium derivatives. The entry of ZrO and TBA into the layers of both kaolinite and montmorillonite was confirmed by XRD measurement. The specific surface areas of kaolinite, ZrO-kaolinite, TBA-kaolinite, montmorillonite, ZrO-montmorillonite, TBA-montmorillonite were 3.8, 13.4, 14.0, 19.8, 35.8 and 42.2 m2/g, respectively. The cation exchange capacity (CEC) was measured as 11.3, 10.2, 3.9, 153.0, 73.2 and 47.6 meq/100 g for kaolinite, ZrO-kaolinite, TBA-kaolinite, montmorillonite, ZrO-montmorillonite, TBA-montmorillonite, respectively. Adsorption increased with pH till Cu(II) ions became insoluble in alkaline medium. The kinetics of the interactions suggests that the interactions could be best represented by a mechanism based on second order kinetics (k2 = 7.7 × 10−2 to 15.4 × 10−2 g mg−1 min−1). The adsorption followed Langmuir isotherm model with monolayer adsorption capacity of 3.0–28.8 mg g−1. The process was endothermic with ΔH in the range 29.2–50.7 kJ mol−1 accompanied by increase in entropy and decrease in Gibbs energy. The results have shown that kaolinite, montmorillonite and their poly(oxo zirconium) and tetrabutyl-ammonium derivatives could be used as adsorbents for separation of Cu(II) from aqueous solution.  相似文献   

18.
In the work, poly(ethylene terephthalate) (PET) fibers were grafted with 4‐vinyl pyridine (4‐VP) monomer using benzoyl peroxide (Bz2O2) as initiator in aqueous media. The removal of Hg(II) ions from aqueous solution by the reactive fiber was examined by batch equilibration technique. Effects of various parameters such as pH, graft yield, adsorption time, initial ion concentration, and adsorption temperature on the adsorption amount of metal ions onto reactive fibers were investigated. The optimum pH of Hg(II) was found 3. The maximum adsorption capacity was found as 137.18 mg g?1. Moreover such parameters as the adsorption kinetics, the adsorption isotherm, desorption time and the selectivity of the reactive fiber were studied. The adsorption kinetics is in better agreement with pseudo‐first order kinetics, and the adsorption data are good fit with Freundlich isotherms. The grafted fiber is more selective for Hg(II) ions in the mixed solution of Hg(II)‐Ni(II), Hg(II)‐Zn(II), and Hg(II)‐Ni(II)‐Zn(II) at pH 3. Adsorbed Hg(II) ions were easily desorbed by treating with 1M HNO3 at room temperature. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
Adsorption of Ni(II) onto blue-green marine algae (BGMA) is investigated under batch condition. Under optimum experimental conditions, the initial Ni(II) metal ion concentration is varied from 25 to 250 ppm and the maximum adsorption capacity of BGMA is found to be 42.056 mg/g. The optimum pH, biomass loading, and an agitation rate on maximum removal of Cu(II) ion are found to be 6, 2 g, and 120 rpm, respectively. 24 h of contact time is allowed to achieve equilibrium condition. All the experiments are carried out at room temperature. The equilibrium experimental data infer that the isotherm is L-shaped. It is the indication of no strong competition between solvent and Ni(II) to occupy the active sites of BGMA. Also, it indicates that the BGMA has a limited sorption capacity for adsorption of Ni(II). The experimental data are tested with various isotherm models; subsequently, the mechanism of adsorption is identified and the characteristic parameters for process design are established. Fritz–Schlunder-V isotherm model is highly significant in establishing the mechanism of adsorption of Ni(II) under the conditions employed in this investigation followed by Freundlich. The qmax of 41.89 mg/g obtained by this model indicates its relevance more precisely with experimental data.  相似文献   

20.
《分离科学与技术》2012,47(8):1337-1345
The role of reaction temperature in the structure of Zn(II)-1,4,-Benzendicarboxylic-MOFs (Zn-BDC-MOFs) and subsequently their CO2 adsorption properties were investigated. Crystal morphology and phase structure of the Zn-BDC-MOFs were characterized by SEM and PXRD. Stability and textual properties of the Zn-BDC-MOFs were analyzed by using accelerated surface area and porosimetry apparatus (ASAP) and thermogravimetric analysis (TG). Adsorption equilibrium and diffusion of CO2 on these materials were experimentally studied by the gravimetric method in the pressure range up to 1 atm at room temperature. Results showed that reaction temperature changed the coordination mode of 1,4,-Benzendicarboxylic acid ligand and caused the different structures and pore texture of Zn-BDC-MOFs. High reaction temperature was good for the generation of the three-dimensional MOFs with a higher adsorption capacity for CO2 but lower gas diffusivity. In contrast, low reaction temperature could cause the monodentate ligand in metal centers and form the low-dimensional MOFs with a lower adsorption capacity for CO2 but higher gas diffusivity. The order of CO2 adsorption uptake and diffusion time constant were given as MOF-130T > MOF-50T > MOF-100T > MOF-75T and MOF-50T > MOF-75T > MOF-100T > MOF-130T, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号