首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《分离科学与技术》2012,47(8):1167-1176
The present research is to investigate the possibility of macrofungus Lycoperdon perlatum biomass, which is an easily available, renewable plant, low-cost, as a new biomass for the removal of mercury (Hg(II)) ions from aqueous solutions. The effects of various parameters like pH of solution, biomass concentration, contact time, and temperature were studied by the using the batch method. The Langmuir model adequately described the equilibrium data. The biosorption capacity of the biomass was found to be 107.4 mg · g?1 at pH 6. The mean free energy value (10.9 kJ · mol?1) obtained from the D–R model indicated that the biosorption of Hg(II) onto fungal biomass was taken place via chemical ion-exchange. Thermodynamic parameters showed that the biosorption of Hg(II) onto L. perlatum biomass was feasible, spontaneous, and exothermic in nature. The kinetic results showed that the biosorption of Hg(II) onto fungal biomass followed second-order kinetics. This work also shows that L. perlatum biomass can be an alternative to the expensive materials like ion exchange resins and activated carbon for the treatment of water and wastewater containing mercury ions due to its ability of selectivity and higher biosorption capacity and also being low cost material.  相似文献   

2.
《分离科学与技术》2012,47(6):776-785
Biosorption of As(V) was carried out using Paecilomyces variotii biomass in batch and column mode experiments. Various pretreatments like autoclaving (APV), iron doping (FePV), and PVP K25 doping (PVPPV) of biomass were carried out to increase and compare the adsorption efficiency of As(V) onto the biomass. At maximum concentration of 2.5 mg/L of As(V), the removal was observed to be 58.4, 51.29, and 47.7% with FePV, PVPPV, and APV biomass respectively. PVPPV required comparatively less time (135 min) to attain equilibrium when compared to other adsorbents (165 min). FePV showed higher As(V) adsorption capacity (Qo) of 1.563 mg/L in batch mode. The batch mode data were analysed using Langmuir and Freundlich isotherms and first order and pseudo second-order kinetic models. The maximum removal was observed at pH 2 with FePV. In column mode experiments, the change in the flow rate and the bed volume affected the adsorption capacity of the adsorbent. FePV showed maximum adsorption of As(V) in column mode experiments also. The desorption experiments revealed that the adsorbents could be reused so that it can be a cost-effective adsorbent for As(V) removal from drinking water.  相似文献   

3.
《分离科学与技术》2012,47(14):2291-2297
The present work deals with the use of Caesalpinia bonducella seed powder (CBSP) as a biosorbent for Ni(II) removal from aqueous solution. The nature and morphology of the sorbent were determined using FTIR spectral, SEM, and EDX analysis. The biosorption characteristics of Ni(II) onto CBSP was investigated as a function of pH, biosorbent dosage, contact time, initial metal ion concentration, and temperature. Langmuir and Freundlich isotherms were used to fit the experimental data. The best interpretation for the equilibrium data was given by the Langmuir isotherm. The maximum biosorption capacity was found to be 188.7 mg/g for Ni(II) at pH 5.0 and at 323 K. The equilibrium biosorption data were well fitted with the pseudo-second-order kinetic equation. The values of thermodynamic parameters (ΔGo, ΔHo, and ΔSo) indicated that the biosorption of Ni(II) onto CBSP was feasible, spontaneous and exothermic in nature. The FTIR results revealed that hydroxyl, amine, carboxyl, and carbonyl functional groups are responsible for Ni(II) biosorption onto CBSP.  相似文献   

4.
谷壳对水中铜镉离子的生物吸附研究   总被引:3,自引:0,他引:3  
研究了农业副产物谷壳对水中Cu2+、Cd2+的生物吸附过程及其影响因素,以间歇实验的方式考察了吸附时间、溶液初始pH值、谷壳用量、谷壳粒径、吸附温度、金属离子初始浓度等物化参数对吸附过程的影响,研究了其吸附热力学和动力学。结果表明谷壳对Cu2+、Cd2+的吸附均符合Langmuir和Freundlich等温吸附模式,都遵循拟二级动力学模型。利用谷壳做生物吸附剂去除废水中重金属离子,既是对农作物副产物的合理利用,也是重金属废水净化的一种有效方法,谷壳有望成为一种低成本有效、效果好的净化重金属废水的新型生物吸附剂。  相似文献   

5.
《分离科学与技术》2012,47(15):2293-2301
The capacity of Ganoderma lucidum biomass for biosorption of selenium (IV) ions from aqueous solution was studied in a batch mode. In this study the effects of operating parameters such as solution pH, adsorbent dosage, initial metal concentration, contact time, and temperature were investigated. The adsorption capacity of G. lucidum was found to be 126.99 mg g?1. The biosorption follows pseudo-first order kinetics and the isotherms fit well to both Langmuir and Freundlich isotherm models. Isotherms have been used to determine thermodynamic parameters of the process, that is, free energy, enthalpy, and entropy changes. Furthermore, the biosorbent was characterized by scanning electron microscopy and FT-IR analysis. FT-IR analysis of fungal biomass shows the presence of amino, carboxyl, hydroxyl, and carbonyl groups, which were responsible for the biosorption of selenium(IV) ions. The results indicated that the biomass of G. lucidum is an efficient biosorbent for the removal of selenium (IV) ions from aqueous solutions.  相似文献   

6.
《分离科学与技术》2012,47(16):2517-2525
Biomass obtained from arsenic resistant gram positive bacteria Rhodococcus sp. WB-12 was studied for the removal of arsenite from aqueous solution. The biomass sorption characteristic was investigated as a function of biomass doses, contact time, and pH. The Langmiur Freundlich, and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherm. The biosorption capacity of the biomass for As(III) was found to be 77.3 mg/g (pH 7.0) using 1 g/L biomass with the contact time of 30 min at 30°C. Kinetic evaluation of experimental data showed biosorption of As (III) followed pseudo-second-order kinetics. The Fourier transform infrared spectroscopy (FT-IR) analysis indicated the involvement of possible functional groups (-OH, -C=O, -NH) in the arsenite biosorption process. Thus, biomass derived from Rhodococcus sp. WB-12 cells has potential for use as biosorbent for the removal of arsenic from contaminated water.  相似文献   

7.
《分离科学与技术》2012,47(1):112-123
The feasibility of using eggshells as a low-cost biosorbent for the removal of Direct Red 28 (DR 28) from aqueous solutions was studied in batch and dynamic flow modes of operation. The effect of biosorption process variables such as particle size, solution pH, initial dye concentration, contact time, temperature, feed flow rate, and bed height were investigated. Both the Langmuir and Freundlich isotherm models exhibited excellent fit to the equilibrium biosorption data. Optimum pH (6.0), particle size (<250 µm), initial dye concentration (50 mg g?1), temperature (313 K), and contact time (240 min) gave maximum monolayer biosorption capacity of 69.45 mg g?1 which was higher than those of many sorbent materials. Pseudo-second-order kinetic model depicted the biosorption kinetics accurately. Thermodynamic study confirmed the spontaneous and endothermic nature of the biosorption process. Breakthrough time increased with increase in the bed height but decreased with increase in flow rate. Overall, batch and continuous mode data suggest the applicability of eggshells as an environment friendly and efficient biosorbent for removal of DR 28 from aqueous media.  相似文献   

8.
《分离科学与技术》2012,47(15):3902-3919
Abstract

Biosorption experiments were carried out in batch and column mode for the removal of As(V) from aqueous solution using native, autoclaved and PVP treated Aspergillus clavatus biomass. The influence of process parameters such as contact time, As(V) concentration, adsorbent dosage, and pH have been investigated for As(V) adsorption. Maximum As(V) removal was observed with PVP K25 modified biomass (PVPAB) (80.25%) when compared to native (57%) and autoclaved (71.63%) biomass. PVPAB biomass required less time to reach equilibrium (90 min) whereas autoclaved and native biomass required 105 and 125 min to attain saturation respectively. The PVPAB showed maximum As(V) removal (Q0 = 2.06 mg/g) and was used as adsorbent for column studies. Equilibrium isotherms were analyzed by Langmuir and Dubinin and Radushkevich isotherms. Kinetics of the adsorption process was studied using pseudo-first-order and second-order models and it was found to obey pseudo-second-order kinetic model. Desorption studies showed that PVPAB could be reused after regeneration and could lead to the development of viable and cost-effective technology for arsenic removal from ground water.  相似文献   

9.
《分离科学与技术》2012,47(5):1221-1238
Abstract

Mercury removal from wastewater is a recognized pollution control challenge today. In the present investigation, the biosorption of Hg(II) onto the dead biomass of four different species of marine Aspergillus, prepared by alkaline treatment, was studied. Among the cultures studied, A. niger was found to be the most efficient for Hg(II) removal. The effects of initial Hg(II) concentration, contact time, pH, temperature, and biosorbent dosage on biosorption were also investigated. It was observed that biosorption equilibriums were established in about 2 h. Under the optimum conditions (pH: 3.0, Hg(II) concentration: 250 mg/L, biomass dose: 0.8 g/L, temperature: 40°C and contact time: 2 h), 40.53 mg Hg(II) was biosorbed per gram of dead biomass of A. niger. Kinetic studies based on fractional power, zero order, first order, pseudo first order, Elovich, second order, and second order rate expressions have also been carried out where the pseudo second order model exhibited best fit to experimental data. The intra‐particle diffusion study revealed that film diffusion is the rate‐limiting sorption process for Hg(II) on A. niger. The nature of the possible cell–metal ion interactions was evaluated by FTIR, SEM, and EDAX analysis. These examinations indicated the involvement of ‐OH and ‐NH2 + groups in the biosorption process present on the surface of the dead fungal biomass. Here, Hg(II) ions were deposited on the surface of the biomass as a film like structure.  相似文献   

10.
Lichens are valuable natural resources used for centuries throughout the world as medicine, food, fodder, perfume, spices and dyes, as well as for other miscellaneous purposes. This study investigates the antiproliferative, antibacterial and antifungal activity of the acetone extract of the lichen Xanthoria parietina (Linnaeus) Theodor Fries and its major secondary metabolite, parietin. The extract and parietin were tested for antimicrobial activity against nine American Type Culture Collection standard and clinically isolated bacterial strains, and three fungal strains. Both showed strong antibacterial activity against all bacterial strains and matched clinical isolates, particularly against Staphylococcus aureus from standard and clinical sources. Among the fungi tested, Rhizoctonia solani was the most sensitive. The antiproliferative effects of the extract and parietin were also investigated in human breast cancer cells. The extract inhibited proliferation and induced apoptosis, both effects being accompanied by modulation of expression of cell cycle regulating genes such as p16, p27, cyclin D1 and cyclin A. It also mediated apoptosis by activating extrinsic and intrinsic cell death pathways, modulating Tumor Necrosis Factor-related apoptosis-inducing ligand (TRAIL) and B-cell lymphoma 2 (Bcl-2), and inducing Bcl-2-associated agonist of cell death (BAD) phosphorylation. Our results indicate that Xanthoria parietina is a major potential source of antimicrobial and anticancer substances.  相似文献   

11.
《分离科学与技术》2012,47(13):3545-3562
Abstract

A batch study showed that the presence of anions (sulfate, chloride, and nitrate) in solution did not affect the adsorption process of both As(V) and As(III) by iron oxide-coated A. niger biomass. It was found that the presence of Ca2+, Fe2+, and Mg2+ ions at a concentration of 200 mg/L in solution could increase the removal efficiency of As(V) by 86.5%, 95.4%, and 65.8%, respectively. Similarly, the presence of Ca2+, Fe2+, and Mg2+ ions at a concentration of 200 mg/L in solution could increase the removal efficiency of As(III) by 39.3%, 97%, and 8.4%, respectively. The batch adsorption-desorption study showed that the reactions between the arsenic species and the iron oxide-coated A. niger biomass were reversible. Desorption of As(V) and As(III) at neutral pH was approximately 15%. As(V) desorbed more than As(III) in acidic (pH 1.33) and alkaline (pH 12.56) solutions. At a pH of 1.33, 67% of the adsorbed As(V) desorbed, and the percentage of desorbed As(III) was only 47.1% in the same condition. At a solution pH of 12.56, 73.4% of the As(V), and 43.7% of As(III) desorbed. The thermodynamic study showed the spontaneous nature of the sorption of arsenic on IOCB. The high value of the heat of adsorption {ΔH ≈ ? 133 kJ/mol for As(V), and 88.9 k/mol for As(III)} indicated that the mechanism of arsenic sorption was chemisorption.  相似文献   

12.
The present paper investigates the adsorption of arsenic(III) (As(III)) onto 2 concrete-based low-cost materials, i.e., Aerocrete and Vermiculite impregnated by ferric oxyhydroxide. Adsorption experiments were performed to study the effect of initial pH, initial concentration of As(III), contact time, and ions usually present in water. No significant effect of the initial pH on the adsorption of As(III) by Aerocrete and Vermiculite was observed at the pH range of 4–8. The As(III) removal efficiency decreased at a high initial pH (i.e., 10). The Langmuir isotherm showed that the maximum As(III) adsorption capacity of Aerocrete and Vermiculite is 15.15 and 13.51 mg/g, respectively, which is higher than that observed using titanium dioxide (i.e., 3.52 mg/g), at pH 7 and 24 ±1 °C. A pseudo-second order kinetic model fitted well the experimentally obtained kinetic data. This suggests that chemisorption most probably controls the adsorption of As(III) on Aeroctere and Vermiculite. Significantly, As(III) (1 mg/L) could be removed almost completely by both Aeroctere and Vermiculite (1 g/L) in 30 and 60 min, respectively at pH 7 and 24 ±1 °C. Importantly, Ca2+, Mg2+, Na+, HCO3, SO42−, and Cl ions had no significant effect on the adsorption of As(III) on Aeroctere and Vermiculite. The results showed that the proposed concrete-based adsorbents have the potential to remove As(III) from water.  相似文献   

13.
《分离科学与技术》2012,47(1):192-211
Abstract

In this study, the biosorption of Basic Blue 9 (BB9) dye from aqueous solutions onto a biomass of Euphorbia rigida was examined by means of the initial biosorbate concentration, biosorbent amount, particle size, and pH. Biosorption of BB9 onto E. rigida increases with both the initial biosorbate concentration and biosorbent amount, whereas decreases with the increasing particle size. The experimental data indicated that the biosorption isotherms are well‐described by the Langmuir equilibrium isotherm equation at 20, 30, and 40°C. Maximum biosorption capacity was 3.28×10?4 mol g?1 at 40°C. The biosorption kinetics of BB9 obeys the pseudo‐second‐order kinetic model. The thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated to estimate the nature of biosorption. These experimental results have indicated that E. rigida has the potential to act as a biosorbent for the removal of Basic Blue 9 from aqueous solutions.  相似文献   

14.
《中国化学工程学报》2014,22(11-12):1340-1346
Although common calcium-containing minerals such as calcite and gypsum may fix arsenic, the interaction between modified calcic minerals and arsenic has seldom been reported. The uptake behavior of As(III)/As(V) from aqueous solutions by calcium sulfate whisker (CSW, dihydrate or anhydrite) synthesized through a cooling recrystallization method was explored. A series of batch experiments were conducted to examine the effect of pH, reaction time, whisker dosage, and initial As concentration. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the samples prepared. The results showed that pH of the aqueous solution was an important parameter for As(III)/As(V) uptake, and an excellent removal efficiency could be achieved under strongly alkaline condition. The data from batch experiments for reaction of As(V) with calcium sulfate dihydrate whisker (CSDW) and calcium sulfate anhydrous whisker (CSAW) were well described with extended Langmuir EXT1 model, from which theoretic maximum adsorption capacity of 46.57 mg As(V)·(g CSDW) 1 and 39.18 mg As(V)·(g CSAW) 1 were obtained. Some calcium arsenate solids products, such as CaAsO3(OH) (weilite, syn), Ca3(AsO4)2 (calcium arsenate), CaO–As2O5, Ca–As–O, Ca5(AsO4)3OH·xH2O (calcium arsenate hydroxide hydrate), and CaH(AsO4)·2H2O (hydrogen calcium arsenic oxide hydrate), were detected at pH = 12.5 through XRD analysis. This indicates that the interaction mechanism between As(V) and CSW is a complex adsorption process combined with surface dissolution and chemical precipitation.  相似文献   

15.
ABSTRACT

The solid residue of the cold press oil extraction from prickly pear (Opuntia ficus indica L.) fruit seeds was evaluated as a low-cost biosorbent for biosorption of Cr(VI) from aqueous solutions. Batch experiments were conducted as a function of initial pH, contact time, biosorbent dose, initial Cr(VI) concentration, and temperature. Biosorption was highly pH-dependent and found to be maximum at pH 1.0. Langmuir and Freundlich equations fitted very well with experimental data. The maximum monolayer adsorption capacity was 19.61 mg/g at 298 K and pH 1.0. Biosorption kinetics was controlled by the pseudo-second-order model. Thermodynamic parameters indicated that biosorption of Cr(VI) was a spontaneous, favorable and endothermic process. The activation energy was found to be 40.68 kJ.mol?1.  相似文献   

16.
《分离科学与技术》2012,47(6):814-823
Various parameters were tested for the application of natural muscovite (NM) in the removal of metals from aqueous solutions: contact time, pH, ionic strength, and initial metal concentrations. Kinetic studies showed that the pseudo-second-order model explains well the sorption process. The adsorption of metals was greatly influenced by solution pH but not by ionic strength. The results from isotherm studies agreed more with the Freundlich isotherm model than with the Langmuir isotherm model. The adsorbed quantity of metals by NM was lower than that by the purified mica. These results suggested that the composition and surface characteristics of natural minerals may seriously influence applications for water purification.  相似文献   

17.
以废弃香芋柄作为新型生物吸附剂,通过静态吸附实验,研究了pH、温度、吸附时间、Mn2+初始浓度等因素对香芋柄吸附Mn2+的影响,分析了吸附过程的热力学、动力学和等温吸附规律. 结果表明,溶液初始pH=4,香芋柄用量6 g/L,30℃下吸附60 min,溶液中Mn2+吸附去除率达90.79%以上,吸附容量高达18.16 mg/g. 应用Langmuir和Freundlich模型描述香芋柄对Mn2+的吸附过程,结果显示Freundlich吸附等温线拟合效果更好. 吸附动力学实验数据符合准二级动力学模型. 计算得到热力学参数DG<0, DH>0, DS>0,表明该吸附过程是自发和吸热的过程.  相似文献   

18.
《分离科学与技术》2012,47(15):3149-3165
Abstract

Biosorption of nickel (II) and copper (II) ions from aqueous solution by dead sphaeroplea algae in natural and acid treated forms were studied as a function of concentration, pH, and adsorbent dose. The optimum pH for nickel (II) and copper (II) biosorption was found to be 6.0 and 4.0 respectively. The metal ion uptake increased with initial metal ion concentration studied up to 500 mg/L. Both the Freundlich and Langmuir adsorption models could fit the equilibrium data. The adsorption reasonably fitted the Lagergren kinetic model. Further the biomass was characterized by FTIR spectra. Surface area values are measured to be 0.9 and 2.1 m2/g for natural and acid treated forms respectively. The maximum adsorption capacity was found to be 3.40, 4.15 mmol/g for nickel (II) and 2.21, 3.41 mmol/g for copper (II) in natural and acid treated forms respectively.  相似文献   

19.
The removal of As(III) and As(V) from acidic and basic solutions by electrochemical reduction was studied using a reticulated vitreous carbon cathode and a IrO2/Ti anode in an electrochemical reactor that could be operated divided or undivided. By using a cascade of 7–9 plug flow reactors, residual concentrations of arsenic less than 20 ppb were achieved upon reduction of 100 ppm As(III) in either acidic or alkaline solutions and for 100 ppm As(V) in acidic solution. The reduction of As(V), generally considered electrochemically inactive in alkaline solutions, was proved possible, but was much less efficient. In all cases, the only product of electrochemical reduction was arsine. A moderate improvement in reduction efficiency was achieved under conditions of electrocatalytic hydrogenation using 5% Pd on alumina as catalyst.  相似文献   

20.
《分离科学与技术》2012,47(15):2360-2366
A combustion method using urea as fuel and barium nitrate as oxidant was applied for the synthesis of barium carbonate, which was characterized by XRD, IR, SEM, and BET. A batch technique was employed to study the Eu(III) adsorption from an aqueous solution using BaCO3. It was found that the adsorption process attains equilibrium within 3 hours and depends upon the pH, europium concentration, and temperature. The kinetic data of the process could be fitted by means of the pseudo-second order and the intraparticle mass transfer diffusion models, whereas the isotherm by means of the Langmuir equation. Thermodynamic parameters indicate that the process is spontaneous and endothermic in nature. These results suggest that BaCO3 is an effective material for Eu(III) adsorption from aqueous solutions. The findings of this study could be relevant for heterogeneous catalytic processes as well have an environmental impact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号