首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A conventional free‐radical initiating process was used to prepare graft copolymers from acrylonitrile (AN) with corn‐cob cellulose with ceric ammonium nitrate (CAN) as an initiator. The optimum grafting was achieved with corn‐cob cellulose (anhydroglucose unit, AGU), mineral acid (H2SO4), CAN, and AN at concentrations of 0.133, 0.081, 0.0145, and 1.056 mol/L, respectively. Furthermore, the nitrile functional groups of the grafted copolymers were converted to amidoxime ligands with hydroxylamine under basic conditions of pH 11 with 4 h of stirring at 70°C. The purified acrylic polymer‐grafted cellulose and polyamidoxime ligand were characterized by Fourier transform infrared spectroscopy and field emission scanning electron microscopy analysis. The ligand showed an excellent copper binding capacity (4.14 mmol/g) with a faster rate of adsorption (average exchange rate = 7 min), and it showed a good adsorption capacity for other metal ions as well. The metal‐ion adsorption capacities of the ligand were pH‐dependent in the following order: Cu2+ > Co2+ > Mn2+ > Cr3+ > Fe3+ > Zn2+ > Ni2+. The metal‐ion removal efficiency was very high; up to 99% was removed from the aqueous media at a low concentration. These new polymeric chelating ligands could be used to remove aforementioned toxic metal ions from industrial wastewater. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40833.  相似文献   

2.
A novel amidoxime‐based silica adsorbent was prepared by using radiation‐induced grafting technique. Grafting of acrylonitrile (AN) on silanized silica that was silanized by vinyltriethoxysilane (VTES) was carried out in solvent‐free system. The grafting of AN was increased with increasing the absorbed dose and monomer concentration in the mixture. Grafting of 748% of AN was achieved at 20 kGy dose. The nitrile groups of acrylonitrile grafted silica (AN‐g‐S) were chemically converted into amidoxime groups. The structure of AN‐g‐S and its corresponding products was investigated by FTIR, SEM, TGA, BET, and XRD analysis. FTIR and EDX analysis confirmed the grafting of AN onto silica surface. The changed morphology of SEM images shows the presence polyacrylonitrile layers on silica particles. The adsorption application of amidoxime‐grafted silica (AO‐g‐S) was studied against Cu2+. Its adsorption capacity is strongly depended on the pH of the solution and 172 (mg/g) of Cu2+ uptake was obtained at pH 5.0. The developed adsorbent has potential application to remove heavy metal ions from aqueous solutions. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45437.  相似文献   

3.
Amidoximated grafted cellulose was obtained by reacting hydroxylamine and cellulose‐graft‐polyacrylonitrile (C‐g‐PAN), prepared by KMnO4/citric acid redox system, and the resultant amidoximated grafted cellulose was characterized by scanning electron microscope (SEM), solid‐state NMR, FTIR, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and elemental analysis. The highest value of amidoxime content in the grafted sample was 2.42 mmol/g. The adsorption efficiencies of amidoximated grafted cellulose have been evaluated with studying different adsorption conditions. Amidoximated sample with amidoxime content 2.42 mmol/g showed high ability to adsorb the metal ions from the aqueous solutions as high as 1.7 mmol/g, 1.6 mmol/g, and 0.84 mmol/g for Co2+, Cu2+, Ni2+ ions, respectively, at the highest original metal ion concentration. These values are about three times larger than previous studies. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
A novel chitosan‐based adsorbent (CCTE) was synthesized by the reaction between epichlorohydrin O‐cross‐linked chitosan and EDTA dianhydride under microwave irradiation (MW). The chemical structure of this new polymer was characterized by infrared spectra analysis, thermogravimetric analysis, and X‐ray diffraction analysis. The results were in agreement with the expectations. The static adsorption properties of the polymer for Pb2+, Cu2+, Cd2+, Ni2+, and Co2+ were investigated. Experimental results demonstrated that the CCTE had higher adsorption capacity for the same metal ion than the parent chitosan and cross‐linked chitosan. In particular, the adsorption capacities for Pb2+ and Cd2+ were 1.28 mmol/g and 1.29 mmol/g, respectively, in contrast to only 0.372 mmol/g for Pb2+ and 0.503 mmol/g for Cd2+ on chitosan. Kinetic experiments indicated that the adsorption of CCTE for the above metal ions achieved the equilibrium within 4 h. The desorption efficiencies of the metal ions on CCTE were over 93%. Therefore, CCTE is an effective adsorbent for the removal and recovery of heavy metal ions from industrial waste solutions. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
Graft copolymerization of methyl acrylate (MA) and acrylonitrile (AN) onto acacia cellulose was carried out using free radical initiating process in which ceric ammonium nitrate (CAN) was used as an initiator. The optimum grafting yield was determined by the certain amount of acacia cellulose (AGU), mineral acid (H2SO4), CAN, MA, and AN at 0.062, 0.120, 0.016, 0.397, and 0.550 mol L?1, respectively. The poly(methyl acrylate‐co‐acrylonitrile)‐grafted acacia cellulose was obtained at 55°C after 2‐h stirring, and purified acrylic polymer‐grafted cellulose was characterized by FTIR and TG analysis. Therein, the ester and nitrile functional groups of the grafted copolymers were reacted with hydroxylamine solution for conversion into the hydroxamic acid and amidoxime ligands. The chelating behavior of the prepared ligands toward some metal ions was investigated using batch technique. The metal ions sorption capacities of the ligands were pH dependent, and the sorption capacity toward the metal ions was in the following order: Zn2+ > Fe3+ > Cr3+ > Cu2+ > Ni2+. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
Cation-exchange adsorbents were prepared by radiation-induced grafting of glycidyl methacrylate (GMA) onto polypropylene (PP) fabric and polyethylene (PE) hollow fiber and subsequent phosphonation of epoxy groups of poly(GMA) graft chains. The adsorption characteristics of Pb2+, Cu2+ and Co2+ for the two cation-exchange adsorbents were studied. In the grafting of GMA onto PP fabric, the degree of grafting (%) increased with an increase in reaction time, reaction temperature, and pre-irradiation dose. The maximum grafting yield was observed around 60% GMA concentration. In 50, 130 and 250% GMA-grafted PP fabric, the content of phosphoric acid was 1.52, 3.40 and 4.50 mmol/g at 80 °C in the 85 % phosphoric acid aqueous solution for 24 h, respectively. The adsorption of Pb2+, Cu2+ and Co2+ by PP fabric adsorbent was enhanced with an increased phosphoric acid content The order of adsorption capacity of the PP fabric adsorbent was Pb2+>Co2+>Cu2+. In adsorption of Pb2+, Cu2+ and Co2+ by PE hollow fiber, the amount of Pb2+ adsorbed by the PE hollow fiber adsorbent containing 1.21 mmol/g of -PO3H wasca. 54.4 g per kg. The adsorption amount of Cu2+ and Co2+ in the same PE hollow fiber wasca. 21.0 g per kg andca. 32.1 g per kg, respectively. The order of adsorption of the PE hollow fiber adsorbent was Pb2+>Co2+>Cu2+.  相似文献   

7.
Amidoxime-group-containing fibrous adsorbents for metal ions were synthesized by radiation-induced grafting of acrylonitrile followed by amidoximation of cyano groups with hydroxylamine. The degree of amidoximation and the distribution of amidoxime groups in the fiber were follwed by means of electron probe X-ray microanalysis. The efficiency of adsorbing metal ions was increased by alkaline treatment of the adsorbent at high temperature for a short period before use. The order of adsorption for various bivalent metal ions was Hg > Cu > Ni > Co > Cd. From the distribution pattern of metal ions in the fibrous adsorbent, the adsorption was found to be controlled by the diffusion of the solution containing metal ions inside the adsorbent. It was found that confining amidoxime groups superficially and making short chain length of grafts were effective to obtain a high degree of adsorption.  相似文献   

8.
This work investigates the removal of Cd2+, Cu2+, Ni2+, and Pb2+ ions from aqueous solutions using tururi fibers as an adsorbent under both batchwise and fixed‐bed conditions. It was found that modification of the tururi fibers with sodium hydroxide increased the adsorption efficiencies of all metal ions studied. The fractional factorial design showed that pH, adsorbent mass, agitation rate, and initial metal concentration influenced each metal adsorption differently. The kinetics showed that multi‐element adsorption equilibria were reached after 15 min following pseudo‐second‐order kinetics. The Langmuir, Freundlich, and Redlich–Peterson models were used to evaluate the adsorption capacities by tururi fibers. The Langmuir model was found to be suitable for all metal ions. Breakthrough curves revealed that saturation of the bed was reached in 160.0 mL with Cd2+ and Cu2+, and 52.0 mL with Ni2+ and Pb2+. The Thomas model was applied to the experimental data of breakthrough curves and represented the data well. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40883.  相似文献   

9.
In this article we report a new chelating fiber that was prepared from a hydrolyzate of poly(N‐vinylformamide/acrylonitrile) by a wet‐spinning method. This fiber contains chelating groups, such as amidine groups, amino groups, cyano groups, and amide groups, with high densities. We examined the chelating abilities for several metal ions with this fiber, and present the morphological merit of the fibrous product compared with the globular resin. Based on the research results, it is shown that the fiber has higher binding capacities and better adsorption properties for heavy metal ions than the resin. The pH value of the metal ion solution shows strong influences on the adsorption of the metal ions. The maximum adsorption capacities of the fiber for Cu2+, Cr3+, Co2+, Ni2+, and Mn2+ are 112.23, 88.11, 141.04, 108.06, and 73.51 mg/g, respectively. In mixed metal ions solution, the fiber adsorbs Cr3+, Cu2+ and Co2+ efficiently. The adsorbed metal ions can be quantitatively eluted by hydrochloric acid. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1378–1386, 2002  相似文献   

10.
Aminoalkyl celluloses (AmACs) were prepared from 6-chlorodeoxycellulose and aliphatic diamines H2N(CH2)mNH2 (m = 2, 4, 6, 8). Their adsorption and desorption of divalent heavy metal ions such as Cu2+, Mn2+, Co2+, Ni2+ and their mixtures were also investigated in detail. Adsorption of metal ions on AmACs was remarkably affected by the pH of the solution, the metal ion and its initial concentration, and also the number of methylene units in the diamines. No adsorption of metal ions occurred on AmACs in strongly acidic solutions. However, metal ions were adsorbed rapidly on AmACs from weakly acidic solutions and the amount of adsorption increased with increasing pH. The effectiveness of AmACs as adsorbents decreased with increasing length of the methylene moiety, and AmACs from ethylenediamine (m = 2) was most effective. The adsorption of metal ions on AmACs was in the order Cu2+ > Ni2+ > Co2+ > Mn2+. Accordingly, their behavior followed the Irving-Williams series and Cu2+ ions were preferentially adsorbed from solutions containing metal ion mixtures. The adsorbed ions were easily desorbed from the AmACs by stirring in 0.1 M HCl.  相似文献   

11.
Synthesis, characterization, and amidoximation of diaminomaleodinitrile-functionalized polyethylene terephthalate (PET) grafts were studied. Azobisisobutyronitrile (AIBN) was used as an initiator. Optimum conditions for grafting were as follows: monomer concentration [DAMN] = 0.5M, [AIBN] = 1.50 × 10−3 mol/L, T = 80°C and t = 3 h. Water uptake of the grafted-PET film increased with the increase of grafting yield. The imparted cyano group of the grafted polymer chains (with degree of grafting up to 83%) was converted into amidoxime group by reaction with hydroxylamine. The unique advantage of this polymer is that it contains double amidoxime groups per repeating unit and an additional diethylene spacer unit between neighboring amidoxime groups in each monomeric unit. The grafted-PET films were characterized by FTIR spectroscopy, differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). The grafted-PET films are more thermally stable than the ungrafted-PET membrane, since the grafted membrane showed a single degradation pattern despite having two components. A decrease in Tg values is observed as the grafting yield of copolymers increases indicating the incorporation of polydiaminomaleodinitrile chains in amorphous copolymers with higher thermal stability. The prepared amidoximated DAMN83-g-PET was investigated for its properties in removing heavy toxic metals, such as Pb2+, Cd2+, Zn2+, Fe2+, Cu2+, Ni2+, Co2+, and Ag1+ from waste water. The amidoximated-film is characterized by a considerably greater binding ability with respect to heavy metals. The nature of the metal ion also has great importance in the amount binding to the polymeric material. The kinetics of the sorption/desorption process for Co2+, Ni2+, and Zn2+ are investigated. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
A new chelating ion‐exchange resin containing the hydroxamic acid functional group was synthesized from poly(methyl acrylate) (PMA)‐grafted sago starch. The PMA grafted copolymer was obtained by a free‐radical initiating process in which ceric ammonium nitrate was used as an initiator. Conversion of the ester groups of the PMA‐grafted copolymer into hydroxamic acid was carried out by treatment of an ester with hydroxylamine in an alkaline solution. The characterization of the poly(hydroxamic acid) chelating resin was performed by FTIR spectroscopy, TG, and DSC analyses. The hydroxamic acid functional group was identified by infrared spectroscopy. The chelating behavior of the prepared resin toward some metal ions was investigated using a batch technique. The binding capacities of copper, iron, chromium, and nickel were excellent and the copper capacity was maximum (3.46 mmol g−1) at pH 6. The rate of exchange of the copper ion was very fast that is, t1/2 < 5 min. It was also observed that the metal ion‐sorption capacities of the resin were pH‐dependent and its selectivity toward the metal ions used is in the following order: Cu2+ > Fe3+ > Cr3+ > Ni2+ > Co2+ > Zn2+ > Cd2+ > As3+ > Pb2+. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1256–1264, 2001  相似文献   

13.
《分离科学与技术》2012,47(2):277-287
Competitive adsorption of Ag+, Pb2+, Ni2+, and Cd2 ions on vermiuculite in a binary, ternary, and quaternary mixture was investigated in batch experiments. The effects of the presence of Ag+, Ni2+, and Cd2+ ions on the adsorption of Pb2+ ions were investigated in terms of the equilibrium isotherm. Experimental results indicated that Pb2+ ions always favorably adsorbed on vermiculite over Ag+, Ni2+, and Cd2+ ions. The adsorption equilibrium data of Pb2+ ions better fitted the Langmuir model than the Freundlich model. The results showed that the pseudo-second-order kinetics model was in good agreement with the experimental results for all metal ions, and the adsorption rate among the metal ions followed Ag+ > Pb2+ > Ni2+ > Cd2+. The desorption and regenration study indicated that vermiculite can be used repeatedly and be suitable for the design of a continuous process.  相似文献   

14.
A kind of adsorbent for metal ions, cotton fiber coated by high loading of chitosan (SCCH) was prepared. Its structure was characterized by elemental analysis, scanning electronic microscopy (SEM), Fourier transform infrared spectrum (FTIR), and wide‐angle X‐ray diffraction (WAXD). The adsorption properties of SCCH for Cu2+, Ni2+, Pb2+, Cd2+, such as saturated adsorption capacities, static kinetics, and isotherm were investigated. The adsorption for Ni2+, Pb2+, and Cd2+ was controlled by liquid film diffusion, but by particle diffusion for Cu2+. The adsorption process for Cu2+, Ni2+, Cd2+ could be described with Langmuir or Freundlich equation, but only with Freundlich equation for Pb2+. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
Amidoximated chitosan‐g‐poly(acrylonitrile) (PAN) copolymer was prepared by a reaction between hydroxylamine and cyano group in chitosan‐g‐PAN copolymer prepared by grafting PAN onto crosslinked chitosan with epychlorohydrine. The adsorption and desorption capacities for heavy metal ions were measured under various conditions. The adsorption capacity of amidoximated chitosan‐g‐PAN copolymer increased with increasing pH values, and was increased for Cu2+ and Pb2+ but a little decreased for Zn2+ and Cd2+ with increasing PAN grafting percentage in amidoximated chitosan‐g‐PAN copolymer. In addition, desorption capacity for all metal ions was increased with increasing pH values in contrast to the adsorption results. Stability constants of amidoximated chitosan‐g‐PAN copolymer were higher for Cu2+ and Pb2+ but lower for Zn2+ and Cd2+ than those of crosslinked chitosan. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 469–476, 1999  相似文献   

16.
Synthesis, characterization, and amidoximation of diaminomaleonitrile-functionalized polyvinyl alcohol (PVA) grafts were studied. Ceric ammonium nitrate (CAN) was used as an initiator in an aqueous nitric acid medium under N2 atmosphere. Optimum conditions for grafting were as follows: monomer concentration [DAMN] = 1.4M, [CAN] = 16 × 10−2 mol/L, T = 50°C, and t = 2 h. Water uptake of the PVA graft films increased with the increase of grafting yield. The imparted cyano group of the grafted PVA polymer chains (with degree of grafting up to 136%) was converted into amidoxime group by the reaction with hydroxylamine hydrochloride. The grafted polymers were characterized by FTIR spectroscopy, differential scanning calorimetry, and thermal gravimetric analysis. The grafted PVA films are more thermally stable than the ungrafted PVA membrane, because the grafted membrane showed a single degradation pattern despite having two components. A decrease in Tg values is observed as the grafting yield of copolymers increases indicating the incorporation of polydiaminomaleonitrile chains in amorphous copolymers with higher thermal stability. The prepared amidoximated DAMN136-g-PVA was investigated for its properties in removing heavy toxic metals, such as Pb2+, Cd2+, Zn2+, Fe3+, Cu2+, Ni2+, and Co2+ from water. The amidoximated film is characterized by a considerably greater binding ability with respect to heavy metals. The nature of the metal ion also has great importance in the amount binding to the polymeric material. The kinetics of the sorption/desorption process for Co2+, Ni2+, and Zn2+ were investigated. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
The adsorption isotherms of M2+ ions (M2+ = Ni2+, Co2+, Cd2+, Zn2+ and Mn2+) on the K+-form of δ-MnO2, at pH 6 and at different temperatures, fitted the Langmuir equation and an apparent heat of adsorption, Q, was found to be - 78, - 33, - 34, - 19 and - 15 kJ mol?1 respectively. The adsorption capacity of δ-MnO2 increased in the series: Ni2+ < Co2+ < Cd2+ ± Zn2+ < Mn2+. This was nearly the order of decrease in the radii, r′, of the hydrated ions, estimated from hydration enthalpies. An ionexchange mechanism between hydrated K+ ions in the outer Helmholtz layer and hydrated M2+ ions in the solution, suggests positive entropy contributions which offset the endothermic Q. The proposed mechanism is in agreement with the observed sequence of adsorption capacity and with the decrease in Q in the above series, except for Co2+ adsorption (possibly complicated by the oxidation of Co2+ by δ-MnO2). The adsorption of the cations is probably accompanied by the exchange with Mn ions from the solid. There was evidence of specific adsorption below the point of zero charge (pH 3.3). The adsorption isotherms of Mn2+ ions at pH 7 were higher than those at pH 6 and Q was found to be - 19 kJ mol?1. As the ionic strength increased, the adsorption isotherm of Mn2+ ions at pH 7 and 298 K shifted to lower values. Adsorption isotherms of Cu(II)ions at pH 3.5 and of Fe(III) at pH 2 represent specific adsorption and Q was found to be - 74 and - 13 kJ mol?1 respectively.  相似文献   

18.
Novel chitosan‐based adsorbent materials were synthesized with a higher fatty diacid diglycidyl as a crosslinking agent, and the adsorption ability of the resulting polymers for several metal ions was evaluated. Selective adsorption for Cu2+ in comparison with other divalent metal ions, such as Ni2+, Pb2+, Cd2+, and Ca2+, was observed with the crosslinked chitosan sorbent at pH 6; however, the adsorption power decreased abruptly as the pH value of the solution decreased. The addition of ethylenediamine tetraacetic acid (EDTA) residues to crosslinked chitosan significantly enhanced the adsorption power for metal ions, especially for Ca2+. The adsorptivity of Ca2+ was dramatically improved with the introduction of EDTA residues, and the value was greater than that obtained with a commercial chelate resin (CR11). Although the adsorption power of the EDTA‐derivatized sorbent for other metal ions was just comparable to that of the CR11 material, the newly synthesized adsorbent could be used for the recovery of metal ions from industrial waste solutions with a relatively wide range of pHs, from 4.0 to 6.0. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2758–2764, 2004  相似文献   

19.
A silica support impregnated with 2‐hydroxy‐5‐nonylacetophenone oxime (LIX 84) was prepared after surface modification by ‐aminopropyltriethoxysilane. Fixed‐bed tests were conducted to investigate the capabilities of the prepared adsorbent with respect to the selective removal of copper ions from multi‐metal solutions. Break‐through curves were obtained using the modified silica for a solution containing Cu2+, Cd2+, Ni2+, Co2+ and Zn2+, as well as an industrial electronics wastewater sample. The copper adsorption capacities for the multi‐metal solution and the wastewater were 0.175 and 0.198 mmolg−1, respectively under the conditions used in this study. The copper recovery ratios for the modified silica treated with the multi‐metal solution and the wastewater were 86 and 91%, respectively after treating with 0.1 moldm−3 HNO3. The results show that the modified silica, prepared here, has potential value for the selective removal of copper ions from multi‐component aqueous solutions containing multi‐metals using a fixed‐bed reactor. © 2000 Society of Chemical Industry  相似文献   

20.
Three types of starch derivatives containing amide groups were used in removal of heavy metal ions from their solutions. These starch derivatives were poly(acrylamide)–starch graft copolymer, carbamoylethylated starch, and starch carbamate. The different factors affecting metal ion adsorption on these substrates, such as pH, metal ion concentration, type of starch derivatives, treatment time, and temperature, were studied. Results obtained indicate that the poly(acrylamide)–starch graft copolymer was a selective adsorbant for Hg2+ at pH 0.5–1. The adsorption values ofdifferent metal ions on these starch derivatives follow the order of Hg2+ > Cu2+ > Zn2+ > Ni2+ > Co2+ > Cd2+ > Pb2+. The adsorption values depend upon pH, type of starch derivative, treatment duration, and temperature. The adsorption efficiency percentage of metal ions on the three substrates follows the order of carbamoylethylated starch > poly(acrylamide) − starch graft copolymer > starch carbamate. © 1998 John Wiley & Sons, Inc. J Appl Polm Sci 69: 45–50, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号