首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this study, ethylene vinyl acetate (EVA) was mixed with clinoptilolite (C), a natural zeolite, to prepare EVA‐C nanocomposites. The films were characterized by SEM‐EDS, XRD, and FT‐IR, and heavy metal removal was studied using the batch technique. The effects of the initial pH value and concentration of solutions, contact time, and filler dosage on the adsorption capacity of the composites were investigated. To study the influence of pretreatment on the filler, clinoptilolite was activated using KCl, NaCl, and HCl. Adsorption results show that equilibrium was reached after 24 h, and that sorption reached its maximum at pH values between 5 and 7. The selectivity trend was observed to be Pb > Cu > Co, which was consistent for both single and mixed metal‐ion solutions. Pretreatment significantly increased adsorption capacity of the composite, but was dependent on the conditioning reagent. Nanocomposites filled with HCl‐activated particles demonstrated a high adsorption capacity of between 70 and 80% for all three metals, while KCl‐activated particles were the least efficient with a maximum adsorption capacity of 69% for Pb(II), 54% for Cu(II) and 48% for Co(II). The adsorption data were then fitted to both Langmuir and Freundlich isotherms over the entire concentration range, and the Langmuir isotherm showed a better fit of the experimental sorption data than the Freundlich isotherm. The results obtained show that this simple methodology which can be up‐scaled has great potential for the preparation of a wide variety of similar particle‐filled adsorbent nanocomposites in other environmental remediation applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
Composite nanofibers containing polyacrylonitrile and natural clay particles were fabricated and investigated for the removal of Pb(II), Cu(II) and Zn(II) from aqueous solutions. The adsorption behavior of Pb(II), Cu(II) and Zn(II) can be well described by the Langmuir adsorption model and high loading capacities at pH 7 were obtained. The kinetics of the adsorption process showed that equilibrium was attained after 60 min and the experimental data followed a pseudo-first-order model. The nanocomposites were also tested for photocatalytic degradation of Monocrotophos pesticides in which high degradation efficiency (>90%) was obtained in less than 60 min.  相似文献   

3.
Magnetic polymethylmethacrylate (mPMMA) microbeads carrying ethylene diamine (EDA) were prepared for the removal of heavy metal ions (i.e., copper, lead, cadmium, and mercury) from aqueous solutions containing different amount of these ions (5–700 mg/L) and at different pH values (2.0–8.0). Adsorption of heavy metal ions on the unmodified mPMMA microbeads was very low (3.6 μmol/g for Cu(II), 4.2 μmol/g for Pb(II), 4.6 μmol/g for Cd(II), and 2.9 μmol/g for Hg(II)). EDA‐incorporation significantly increased the heavy metal adsorption (201 μmol/g for Cu(II), 186 μmol/g for Pb(II), 162 μmol/g for Cd(II), and 150 μmol/g for Hg(II)). Competitive adsorption capacities (in the case of adsorption from mixture) were determined to be 79.8 μmol/g for Cu(II), 58.7 μmol/g for Pb(II), 52.4 μmol/g for Cd(II), and 45.3 μmol/g for Hg(II). The observed affinity order in adsorption was found to be Cu(II) > Pb(II) > Cd(II) > Hg(II) for both under noncompetitive and competitive conditions. The adsorption of heavy metal ions increased with increasing pH and reached a plateau value at around pH 5.0. The optimal pH range for heavy‐metal removal was shown to be from 5.0 to 8.0. Desorption of heavy‐metal ions was achieved using 0.1 M HNO3. The maximum elution value was as high as 98%. These microbeads are suitable for repeated use for more than five adsorption‐desorption cycles without considerable loss of adsorption capacity. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 81–89, 2000  相似文献   

4.
A dye ligand Cibacron Blue F3GA, was covalently coupled with polyhydroxyethylmethacrylate (PHEMA) microbeads in the 150–200 μm particle size range. The sorbent carrying 22.3 μmol Cibacron Blue F3GA per gram of polymer was then used to remove Pb(II), Cd(II), Cu(II) and Zn(II) from aqueous solutions in a packed-bed column system. Heavy metal ion adsorption capacity of the column was investigated as a function of heavy metal ion-bearing solution flow rate and the inlet heavy metal ion concentration. The maximum metal ion uptake values found were: 80.60, 96.98, 78.36, 103.98 μmol/g polymer for Pb(II), Cd(II), Cu(II) and Zn(II), respectively. The heavy metal adsorption capacity of the microbeads decreased with an increase in the circulation rate of aqueous solution. The order of affinity based on molar uptake was Zn(II)>Cd(II)>Pb(II)>Cu(II). Removal percentages of heavy metals related to flow time were determined for different flow rates and initial metal ion concentrations. It was observed that PHEMA microbeads carrying Cibacron Blue F3GA can be regenerated by washing with a solution of nitric acid (0.05 M). The desorption ratio was as high as 98.5%.  相似文献   

5.
《分离科学与技术》2012,47(2):214-220
In this research amino functional mesoporous MCM-41 and MCM-48 materials were prepared in an attempt to develop efficient adsorbents for removal of heavy metals from aqueous solutions. The adsorbents were characterized by XRD, FTIR, and TG-DTG techniques. The synthesized adsorbents were used for the removal of Cu(II), Co(II), Cd(II), and Pb(II) from aqueous solutions for the first time, and the influence of some effective parameters including concentration, initial pH, contact time, and temperature on the sorption process was studied and optimized. Significant adsorption capacities were obtained at low concentrations. The kinetic studies showed that the adsorption process was fast and more than 90% of equilibrium capacity was achieved within 60 min. Experimental kinetic data was well fitted with the pseudo-second-order kinetic model. Thermodynamic parameters computed from the experimental data showed that the adsorption was endothermic and spontaneous.  相似文献   

6.
Polypyrrole coated oxidized multiwalled carbon nanotubes (oMWCNT/Ppy) were applied to determine the adsorption characteristics of Pb(II) and Cu(II) from their aqueous solutions. Structural and morphological characterization studies using scanning electron microscopy, thermogravimetric analysis, Fourier transform infrared and Raman spectroscopy showed successful preparation of the oMWCNT/Ppy composite. The influence of pH, contact time, and initial metal ion concentration on the adsorption of Pb(II) and Cu(II) was studied. The adsorption processes fitted well with Langmuir isotherm and pseudo-second-order kinetic models. The maximum adsorption capacities for Pb(II) and Cu(II) were determined as 26.32 and 24.39 mg/g, respectively. Desorption studies indicated that the oMWCNT/Ppy composite could be reused for five cycles with minimum loss of its initial adsorption capacity.  相似文献   

7.
The ion‐exchange equilibrium of Pb(II) and Cd(II) on clinoptilolite from different deposits was studied in this work. The Langmuir isotherm fitted the ion‐exchange equilibrium data of both ions better than the Freundlich isotherm. The capacity of the natural zeolite to exchange Cd(II) and Pb(II) increased, augmenting the solution pH. This behaviour was attributed to the interactions between the ions in solution and the surface charge of the zeolite. Moreover, the capacity of the natural zeolite to exchange Cd(II) and Pb(II) was increased when the temperature was raised from 15 to 35 °C. This tendency was explained by assuming that the ion exchange was an endothermic reaction. The selectivity of the zeolite for the metal cations decreased in the following order: Pb(II) > Cd(II). This order was not modified while reducing the solution pH, but the zeolite selectivity was increased. At pH 2 the selectivity of the zeolite for Pb(II) was nearly three times larger than at pH 4. Copyright © 2006 Society of Chemical Industry  相似文献   

8.
《分离科学与技术》2012,47(16):2383-2393
In this study, the adsorption of Cu(II) and Zn(II) ions from aqueous solutions onto amidoximated polymerized banana stem (APBS) has been investigated. Infrared spectroscopy was used to confirm graft copolymer formation and amidoxime functionalization. The different variables affecting the sorption capacity such as pH of the solution, adsorption time, initial metal ion concentration, and temperature have been investigated. The optimum pH for maximum adsorption was 10.5 (99.99%) for Zn2+ and 6.0 (99.0%) for Cu2+ at an initial concentration of 10 mg L?1. Equilibrium was achieved approximately within 3 h. The experimental kinetic data were analyzed using pseudo-first-order and pseudo-second-order kinetic models and are well fitted with pseudo- second-order kinetics. The thermodynamic activation parameters such as ΔGo, ΔHo, and ΔSo were determined to predict the nature of adsorption. The temperature dependence indicates an exothermic process. The experimental isotherm data were well fitted to the Langmuir model with maximum adsorption capacities of 42.32 and 85.89 mg g?1 for Cu(II) and Zn(II), respectively, at 20°C. The adsorption efficiency was tested using industrial effluents. Repeated adsorption/regeneration cycles show the feasibility of the APBS for the removal of Cu(II) and Zn(II) ions from water and industrial effluents.  相似文献   

9.
Carbon nanotubes were modified with 8-hydroxyquinoline and used for the removal of Cu(II), Pb(II), Cd(II), and Zn(II) from aqueous solutions. Different instrumentation parameters and methods of development for determining metal ions from aqueous solutions using differential pulse anodic stripping voltammetry were studied. The adsorption of heavy metals from aqueous solution by the pristine and modified MWCNTs was studied kinetically using different kinetic models, and the results showed that the adsorption process best fitted the pseudo-second-order model and the Elovich model. The mechanism of adsorption was explored using the intra-particle diffusion model and the liquid-film model.  相似文献   

10.
Two chelating resins (CRs) bearing iminodiacetate (IDA) groups derived from acrylonitrile - divinylbenzene (AN-DVB) copolymers having 10 and 15 wt.% nominal cross-linking degrees and a high mobility of the functional groups caused by the presence of a longer spacer between the matrix and the IDA groups were synthesized and tested as sorbents for heavy metal ions like: Pb(II), Cd(II) and Zn(II) from aqueous solutions by batch and column techniques. Experimental data obtained from batch equilibrium tests have been analyzed by two isotherm models: Freundlich and Langmuir. The overall adsorption tendency of CRs toward Pb(II), Cd(II) and Zn(II), under non-competitive conditions, followed the order: Cd(II) > Pb(II) > Zn(II). Selectivity studies were performed in ternary mixture of Pb(II), Cd(II) and Zn(II) to check if the synthesized CRs can be useful for selective separation of heavy metal cations. The results revealed that the CRs with IDA groups exhibited high selectivity toward Pb(II), both in batch and column techniques. Regeneration of the resins was achieved using 0.1 M HCl solution.  相似文献   

11.
Cement stabilisation has been widely applied for the immobilisation of heavy metal ions before their disposal in landfills. This paper investigated the microstructure of cementitious wastes containing Pb, Cd, As, and Cr using an electron probe microanalyser and examined the implications of the microstructure on the leaching of the metal ions. From the microstructure analysis, it was proposed that Pb, As, and Cr ions were homogeneously dispersed in the calcium silicate hydrate (C-S-H) matrix by adsorption or precipitation with calcium or silicate compounds present in the cement. However, Cd formed discrete Cd(OH)2 precipitates believed to be contained within the cement pores or adsorbed on the C-S-H matrix. The leaching of metals in the pH region of 6 to 8 decreased in the following order: Cr(VI)>Cd(II)>Pb(II)>As(V). This leaching trend was found to be influenced by the manner in which the metal ions were incorporated into the cement matrix.  相似文献   

12.
《分离科学与技术》2012,47(3):579-590
Abstract

Adsorption gel was prepared from waste recycled paper by immobilizing iminodiacetic acid (IDA) functional group by chemical modification. The gel exhibited good adsorption behavior for a number of metal ions viz. Cu(II), Pb(II), Fe(III), Ni(II), Cd(II), and Co(II) at acidic pH. The order of selectivity was found to be as follows: Cu(II)>Pb(II)>Fe(III)>Ni(II)~Cd(II)~Co(II). From the adsorption isotherms, the maximum adsorption capacity of the gel for both Cu(II) and Pb(II) was found to be 0.47 mol/kg whereas that for Cd(II) was 0.24 mol/kg. A continuous flow experiment for Cd(II) showed that the gel can be useful for pre‐concentration and complete removal of Cd(II) from aqueous solution.  相似文献   

13.
The preparation of zeolite X/chitosan (CS) hybrid microspheres for efficient removal of Cu(II) ions by an impregnation-gelation-hydrothermal synthesis technique is reported here. Characterizations by various techniques indicate that the microspheres show porous structures and intimate interaction between zeolite and CS. The adsorption experiments are performed to evaluate the adsorption capacity of zeolite X/CS hybrid microspheres and comparisons are made with binderless zeolite X microspheres, pure CS microspheres and mechanical mixed zeolite X/CS microspheres. The effects of Cu(II) solution concentration and the pH are investigated. The results indicate that zeolite X/CS hybrid microspheres with the zeolite content of 60 wt% show the highest adsorption capacity, which is 90 mg/g at the initial Cu(II) concentration of 10 mg/L and 150.4 mg/g at Cu(II) concentration of 500 mg/L. The adsorption capacity increases with increasing initial pH and reaches a maximum at pH 5.5 in the range of 0–6.0. The equilibrium adsorption data are well described by the Langmuir isotherm model, exhibiting a maximum adsorption capacity of 152.0 mg/g, and the kinetic data are well fitted with the pseudo-second-order equation. Complete removal of Cu(II) ions can be obtained even at very low concentrations. The microspheres show high adsorption capacity and efficiency for Cu(II) ions, exhibiting potential practical application in the treatment of water pollution of heavy metal ions.  相似文献   

14.
《分离科学与技术》2012,47(5):789-796
New adsorption gels were prepared by chemically immobilizing functional groups of ethylenediamine, diethylamine and/or triethylamine on orange waste, named OW-en, OW-DEA, and OW-TEA, respectively. By comparing with the adsorption of other coexisting metals, such as Re(VII), Pb(II), Fe(III), Zn(II), Mn(VII), Ca(II), and Cu(II), the novel gels exhibited selectivity only for Mo(VI) and the adsorption behavior obeys the Langmuir model. The maximum adsorption capacity for molybdenum was in the order, OW-en (2.17 mol/kg) > OW-TEA (1.26 mol/kg) > OW-DEA (0.88 mol/kg). A kinetic study for the adsorption of molybdenum at various temperatures confirmed that the endothermic adsorption process followed pseudo-second order kinetics. In addition, its excellent adsorption characteristics for Mo(VI) were confirmed by the adsorption and elution tests using a column packed with the OW-en gel, especially by separation of Mo(VI) from Mo-Re containing industrial effluent.  相似文献   

15.
Poly[5,5??-methylene-bis(2-hydroxybenzaldehyde)1,2-phenylenediimine] resin was prepared and characterized by employing elemental, thermal analysis, FTIR, and UV?Cvisible spectroscopy. The metal uptake behavior of synthesized polymer towards Cu(II), Co(II), Ni(II), Fe(III) and Cd(II) ions was investigated and optimized with respect to pH, shaking speed, and equilibration time. The sorption data of all these metal ions followed Langmuir, Freundlich, and Dubinin?CRadushkevich isotherms. The Freundlich parameters were computed 1/n?=?0.31?±?0.02, 0.3091?±?0.02, 0.3201?±?0.05, 0.368?±?0.04, and 0.23?±?0.01, A?=?3.4?±?0.03, 4.31?±?0.02, 4.683?±?0.01, 5.43?±?0.03, and 2.8?±?0.05?mmol?g?1 for Cu(II), Co(II), Ni(II), Fe(III), and Cd(II) ions, respectively. The variation of sorption with temperature gives thermodynamic quantity (??H) in the range of 36.72?C53.21?kJ/mol. Using kinetic equations (Morris?CWeber and Lagergren equations), values of intraparticle transport and the first-order rate constant was computed for all the five metals ions. The sorption procedure is utilized to preconcentrate these ions prior to their determination by atomic absorption spectrometer. It was found that the adsorption capacity values for metal-ion intake followed the following order: Cd(II)?>?Co(II)?>?Fe(III)?>?Ni(II)?>?Cu(II).  相似文献   

16.
《分离科学与技术》2012,47(18):2843-2851
A novel adsorbent, chufa corm peels (CCP), is used for removing Cu(II), Cr(III), and Cr(VI) from aqueous solutions. The adsorption ability and characteristics of the CCP are thoroughly investigated. The adsorption capability for three heavy metal ions is in the order of Cu(II) > Cr(III) > Cr(VI). The morphology and elemental distribution on the biomass of CCP were evaluated by scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). Fourier-transform infrared spectroscopy (FTIR) analysis revealed that oxygen-containing functional groups, especially carboxylic and hydroxyl groups were responsible for chemical coordination between ionizable functional groups and metal ions. The adsorption features were evaluated based on the batch biosorption experiment. The results showed that the adsorption well meets the Freundlich adsorption isotherm models and pseudo-second-order kinetics model. In summary, this work demonstrated that CCP is an attractive, efficient, and low-cost adsorbent biomaterial that can be used for the removal of heavy metals from environmental contaminations.  相似文献   

17.
Acrylamide-maleic acid (AAM-MA) hydrogels having high acid group content prepared with different maleic acid ratios were used for the removal of Cu(II) and Pb(II) ions from aqueous solutions in competitive and noncompetitive conditions. The effects of pH, time, and initial metal ion concentration on the metal ion adsorption capacity were investigated. The adsorption isotherm models were applied on experimental data and it is shown that the Freundlich equation was the best model for Cu(II) ion while the Langmuir isotherm model was the best one for Pb(II) ion. The stability constants of acrylamide-maleic acid hydrogel-Cu(II) and Pb(II) complexes were also determined by van den Berg/Ruzic transformation, and K values obtained were 1.60 × 103 and 1.81 × 103 for Cu(II) and Pb(II) ions, respectively. The experiments under competitive conditions showed that the hydrogels prefered Pb(II) ion and this preference increased with increasing of carboxylic acid group content (AGC) of polymers. It is stated that these hydrogels can be regenerated efficiently (>95%) and used repeatedly.  相似文献   

18.
《分离科学与技术》2012,47(16):4000-4022
Abstract

The biosorption of Cu(II) and Zn(II) using dried untreated and pretreated Citrus reticulata waste biomass were evaluated. The Cu(II) and Zn(II) sorption were found to be dependent on the solution pH, the biosorbent dose, the biosorbent particle size, the shaking speed, the temperature, the initial metal ions (800 mg/L), and the contact time. Twenty-eight physical and chemical pretreatments of Citrus reticulata waste biomass were evaluated for the sorption of Cu(II) and Zn(II) from aqueous solutions. The results indicated that biomass pretreated with sulphuric acid and EDTA had maximum Cu(II) and Zn(II) uptake capacity of 87.14 mg/g and 86.4 mg/g respectively. Moreover, the Langmuir isotherm model fitted well than the Freundlich model with R 2 > 0.95 for both metal ions. The sorption of Cu(II) and Zn(II) occurred rapidly in the first 120 min and the equilibrium was reached in 240 min. FTIR and SEM studies were also carried out to investigate functional groups present in the biomass and the surface morphological changes of biomass.  相似文献   

19.
In this study, the competitive separation of lead, cadmium, and nickel ions from aqueous solutions using a commercial activated carbon (AC) has been investigated and optimized using response surface methodology (RSM). The optimal conditions to reach the highest adsorption capacity for these metals were found as follows: initial pH = 6.3, temperature = 56.8°C, and shaking speed = 308 rpm. Under these conditions, the sequence of adsorption capacity toward the metal ions was as follows: Pb (II): 9.44 mg g?1 > Cd (II): 9.37 mg g?1 > Ni (II): 4.52 mg g?1. The effect of shaking speed on the adsorption capacity of AC was higher than the effects of the initial pH and temperature, indicating the more important role of physisorption than chemisorption in the adsorption of these metal ions. This was confirmed by the results of thermodynamic studies. The equilibrium adsorption data were fitted to the Freundlich, Langmuir adsorption isotherm models and the Dubinin–Radushkevich model parameters were evaluated. All the models were tested and all were shown to represent the experimental data satisfactorily. The thermodynamic parameters such as ΔH, ΔS, and ΔG were computed from the experimental data. These values show that the adsorption is endothermic and spontaneous. The positive value of ΔS° indicates increasing of randomness at the solid/liquid interface during the adsorption of metal ions on AC.  相似文献   

20.
《分离科学与技术》2012,47(2):330-339
Introduction of xanthate group onto sugarcane (Saccharum officinarum) bagasse has been investigated for the removal of cadmium, lead, nickel, zinc, and copper from their aqueous media. The charred xanthated sugarcane bagasse (CXSB) was found to have significant adsorption capacity which is more than that of various bio-sorbents mentioned in the available literatures. The newly developed bio-sorbent was characterized by SEM, FTIR, TGA/DTA, and elemental analysis. The velocity of sorption of the tested metals was fast, reaching equilibrium within 40 min. The maximum loading capacities was found to be 225 for Cd(II), 318 for Pb(II), 144 for Ni(II), 164 for Zn(II), and 178 for Cu(II) mg g?1, respectively. The fast kinetics results and high adsorption capacity indicated that CXSB can be applied as the selective adsorbent for the treatment of heavy metal ions from aqueous solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号