首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Grouped ActiNide EXtraction (GANEX) process for the extraction of actinides from used nuclear fuel for transmutation purposes has been investigated. The studied solvent consists of phenyl trifluoromethyl sulfone (FS-13), CyMe4-BTBP, and TBP, a combination that has previously shown promising results. The time to reach extraction equilibrium for the system has been found to be less than 20 min. A 2:1 complex has been found between CyMe4-BTBP and americium(III) or curium(III), whereas plutonium(IV) and CyMe4-BTBP create a 1:1 complex. The extraction of fission product is low in the system.  相似文献   

2.
The effect of adding a t-butyl group to the core molecule of CyMe4-BTBP, with the aim of improving solubility in organic diluents, has been studied with regard to the extraction of Am(III) and Eu(III) from HNO3. Synthesis of t-Bu-CyMe4-BTBP is described in detail. Metal nitrates are extracted from nitric acid in the form of 1:2 complexes, M(NO3)3(BTBP)2. Whether in 1-octanol, kerosene, or cyclohexanone diluents, t-Bu-CyMe4-BTBP extracts with larger distribution ratios but with slower kinetics than CyMe4-BTBP. The general trends previously observed for CyMe4-BTBP regarding the diluent and modifier influence were also found for t-Bu-CyMe4-BTBP.  相似文献   

3.
A computer program has been developed for optimization and modelling of counter–current solvent extraction processes. The distribution between the phases is calculated by either D-ratio functions or by a novel kinetic model for the transfer between the phases. The kinetic model is important to use when slow extraction kinetics yields D-ratios far from equilibrium. Transfer rate data was investigated in a single stage centrifugal contactor, modified for internal recirculation of the phases. Using this methodology a demonstration process for the recovery of minor actinides in a counter–current centrifugal contactor system using CyMe4-BTBP was modelled with excellent agreement towards the experimental values.  相似文献   

4.
The SX Process program has been developed for modelling of extraction processes in centrifugal contactors where the transfer kinetics is of big importance due to the short hold up time. Apparent distribution ratios are calculated using a stage efficiency which is flow-rate independent. In this work the dependency of the stage efficiency on parameters affecting the extraction transfer rate, such as metal loading, O/A ratio and acidity, has been investigated in single stage centrifugal contactor experiments for extraction of americium(III) into a 0.015 M CyMe4-BTBP/0.25 M DMDOHEMA/octanol system. A model is proposed on how to calculate the stage efficiency and to accurately predict the apparent distribution ratios under the different conditions used.  相似文献   

5.
A Group ActiNide EXtraction (GANEX) separation system for transmutation has been developed, combining CyMe4-BTBP with TBP and cyclohexanone. This new GANEX solvent has proven efficient in actinide extraction but also been found to extract some undesired fission products and corrosion products. Three major fission products were primarily selected for the study: Mo, Zr, and Pd. There are three main strategies for handling the extraction problem, all of which have been investigated and discussed; these are Pre-extraction, Suppression, and Scrubbing. The only strategy that was found to control the behavior of all three main fission products was suppression by the combination of two water-soluble complexing agents bimet and mannitol.  相似文献   

6.
ABSTRACT

Studies have been performed with the purpose of determining the optimal solvent composition of a Chalmers grouped actinide extraction (CHALMEX) solvent for the selective co-extraction of transuranic elements in a novel Grouped ActiNide EXtraction (GANEX) process. The solvent is composed of 6,6’-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-benzo-[1,2,4]-triazin-3-yl)-[2,2’]-bipyridine (CyMe4-BTBP) and tri-n-butyl phosphate (TBP) in phenyl trifluoromethyl sulfone (FS-13). The performance of the system has been shown to significantly depend on the ratios of the two extracting agents and the diluent to one another. Furthermore, the performance of the determined optimal solvent (10 mM CyMe4-BTBP in 30% v/v TBP and 70% v/v FS-13) on various simulated PUREX raffinate solutions was tested. It was found that the solvent extracts all transuranic elements with high efficiency and good selectivity with regard to most other elements (fission products/activation products) present in the simulated PUREX raffinate solutions. Moreover, the solvent was found to extract a significant amount of acid. Palladium, silver, and cadmium were co-extracted along with the TRU-radionuclides, which has also been observed in other similar CHALMEX systems. The extraction of plutonium and uranium was preserved for all tested simulated PUREX raffinate solutions compared to experiments using trace amounts.  相似文献   

7.
Abstract

The extraction of americium(III), curium(III), and the lanthanides(III) from nitric acid by 6,6′‐bis(5,5,8,8‐tetramethyl‐5,6,7,8‐tetrahydro‐benzo[1,2,4]triazin‐3‐yl)‐[2,2′]bipyridine (CyMe4‐BTBP) has been studied. Since the extraction kinetics were slow, N,N′‐dimethyl‐N,N′‐dioctyl‐2‐(2‐hexyloxy‐ethyl)malonamide (DMDOHEMA) was added as a phase transfer reagent. With a mixture of 0.01 M CyMe4‐BTBP+0.25 M DMDOHEMA in n‐octanol, extraction equilibrium was reached within 5 min of mixing. At a nitric acid concentration of 1 M, an americium(III) distribution ratio of approx. 10 was achieved. Americium(III)/lanthanide(III) separation factors between 50 (dysprosium) and 1500 (lanthanum) were obtained. Whereas americium(III) and curium(III) were extracted as disolvates, the stoichiometries of the lanthanide(III) complexes were not identified unambiguously, owing to the presence of DMDOHEMA. In the absence of DMDOHEMA, both americium(III) and europium(III) were extracted as disolvates. Back‐extraction with 0.1 M nitric acid was thermodynamically possible but rather slow. Using a buffered glycolate solution of pH=4, an americium(III) distribution ratio of 0.01 was obtained within 5 min of mixing. There was no evidence of degradation of the extractant, for example, the extraction performance of CyMe4‐BTBP during hydrolylsis with 1 M nitric acid did not change over a two month contact.  相似文献   

8.
In the framework of nuclear waste reprocessing, the separation processes of minor actinides from fission products are developed using liquid‐liquid extraction. To gain an understanding of the mechanism involved in the extraction process, a complex formation of actinides and lanthanides with BTBPs (6,6′‐bis(5,6‐dialkyl‐1,2,4‐triazin‐3‐yl)‐2,2′‐bipyridines) was characterized using the Electrospray Ionization Mass Spectrometry (ESI‐MS) technique. This study was carried out to compare the influence of diluents and side groups of the extractants on complex formation. Three different diluents, nitrobenzene, octanol and cyclohexanone, and two extractants, C5‐BTBP and CyMe4‐BTBP, were selected for this experiment. It was found that the change of the diluent and of the substituent on the BTBP moiety does not modify the stoichiometry of the complexes which is L2M(NO3)3. It is proposed that one nitrate is directly coordinated to the metal ion, the two other anions probably remaining in the outer coordination sphere. The difference observed in extracting properties is probably due to the solvation of the complexes by the diluent. The noncovalent force that holds complexes together are likely to be largely governed by electrostatic interactions even if the hydrophobic exterior of the complexes plays an important role in the complexation/extraction mechanism. The study of the stability of the ions in the gas phase shows that the C5‐BTBP ligand has a labile hydrogen atom, which is a fragility point of C5‐BTBP.  相似文献   

9.
The complexation and extraction of the adjacent minor actinides Am(III) and Cm(III) by both hydrophobic and hydrophilic pre-organized 2,9-bis(1,2,4-triazin-3-yl)-1,10-phenanthroline (BTPhen) ligands has been studied in detail. It has been shown that Am(III) is extracted more rapidly than Cm(III) by the hydrophobic CyMe4–BTPhen ligand into different organic diluents under nonequilibrium extraction conditions, leading to separation factors for Am over Cm (SFAm/Cm) as high as 7.9. Furthermore, the selectivity for Am(III) over Cm(III) can be tuned through careful choice of the extraction conditions (organic diluent, contact time, mixing speed, ligand concentration). This “kinetic” effect is attributed to the higher presumed kinetic lability of the Am(III) aqua complex toward ligand substitution. A dependence of the Am(III)/Cm(III) selectivity on the structure of the alkyl groups attached to the triazine rings is also observed, and BTPhens bearing linear alkyl groups are less able to discriminate between Am(III) and Cm(III) than CyMe4–BTPhen. Under equilibrium extraction conditions, hydrophilic tetrasulfonated BTPhen ligands complex selectively Am(III) over Cm(III) and prevent the extraction of Am(III) from nitric acid by the hydrophobic O-donor ligand N,N,N′,N′-tetraoctyldiglycolamide, giving separation factors for Cm(III) over Am(III) (SFCm/Am) of up to 4.6. These results further underline the utility of the BTPhen ligands for the challenging separation of the chemically similar minor actinides Am(III) and Cm(III).  相似文献   

10.
Abstract

The extraction of Am(III), Th(IV), Np(V), and U(VI) from nitric acid by 6,6′‐bis(5,6‐dialkyl‐[1,2,4]‐triazin‐3‐yl)‐[2,2′]‐bipyridines (C2‐, C4‐, C5‐, and CyMe4‐BTBP) was studied. Since only americium and neptunium extraction was dependent on the BTBP concentration, computational chemistry was used to explain this behavior. It has been shown that the coordination of the metal played an important role in forming an extractable complex into the organic phase, thus making it possible to extract pentavalent and trivalent elements from tetravalent and hexavalent elements. This is very important, especially because it shows other possible utilizations of a group of molecules meant to separate the actinides from the lanthanides. In addition, the level of extraction at very low or no BTBP concentration was explained by coordination chemistry.  相似文献   

11.
The direct and selective extraction of Am(III) from simulated PUREX raffinate is demonstrated using a novel combination of the lipophilic extractant CyMe4BTPhen (2,9-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydrobenzo[e]-[1,2,4]triazin-3-yl)-1,10-phenanthroline) and the hydrophilic complexant TEDGA (N,N,N’,N’-tetraethyl-diglycolamide) to enhance selectivity toward Am(III) extraction. Separation factors (SF) of up to SFAm/Cm = 4.9 were observed in tracer experiments using this combination of CyMe4BTPhen and TEDGA. Distribution ratios of stable isotopes of fission and activation products contained in a simulated PUREX raffinate solution are reported for the first time with CyMe4BTPhen, and some co-extracted metal ions are identified. The metal ions partly co-extracted from the simulated PUREX raffinate solution were Cu, Pd, Cd, Ag, Ni, and to a lesser extent Sn and Mo. The co-extraction of Pd and Ag was successfully suppressed using Bimet ((2S,2’S)-4,4’-(ethane-1,2-diylbis(sulfanediyl))bis(2-aminobutanoic acid)). The extraction was also studied as a function of the TEDGA concentration. The distribution ratios of Am and Cm can be adjusted by variation of the TEDGA concentration to yield DAm values >1 and DCm values <1. Separation factors for Am(III) over Cm(III) of up to SFAm/Cm = 2.4 were observed in these experiments. For Ln(III) + Y(III), distribution ratios below 1 were observed, thus enabling a direct extraction of Am(III) from simulated PUREX raffinate with a sufficient selectivity against trivalent lanthanides and Cm(III).  相似文献   

12.
《分离科学与技术》2012,47(9):2022-2040
Abstract

3-Phenyl-4-benzoyl-5-isoxazolone (HPBI) was synthesized and examined with regard to the synergistic solvent extraction behavior of zirconium(IV) and hafnium(IV) in the presence of various crown ethers (CEs), namely, 18-crown-6 (18C6), dicylohexano-18-crown-6 (DC18C6) and benzo-15-crown-5 (B15C5) from hydrochloric acid solutions. The results demonstrated that zirconium(IV) and hafnium(IV) were synergistically extracted into chloroform with mixtures of HPBI and CEs as ZrO(PBI)2 · CE and HfO(PBI)2 · CE, respectively. The complexation strength follows the order DC18C6 >18C6 > B15C5. The addition of CEs not only enhances the extraction efficiency of zirconium(IV) and hafnium(IV) but also significantly, especially in the presence of B15C5, improves the selectivity (Zr/Hf = 4.73) between these metal ions as compared to HPBI alone (Zr/Hf = 2.09). On the other hand, selectivity has been moderately decreased by the addition of 18C6 or DC18C6 to the metal-chelate system.  相似文献   

13.
Three new non-fluorous bipyridine derivatives, bis(2-(2-butoxyethoxy)ethyl)-2,2′-bipyridine-4,4′-dicarboxylate (ligand 1), bis(2-(2-ethoxyethoxy)ethyl)-2,2′-bipyridine-4,4′-dicarboxylate (ligand 2), and bis(2-butoxyethyl)-2,2′-bipyridine-4,4′-dicarboxylate (ligand 3), were synthesized as chelating ligands to remove metal ions from solid matrix into supercritical CO2 (scCO2). These produced compounds 1-3 showed considerable solubilities in scCO2 (8.0 g/l, 4.8 g/l, 7.8 g/l for ligands 1-3 at 313 K, respectively) and the tested solubility data were then calculated and correlated with semiempirical model at different pressures and temperatures, which showed satisfactory agreement with each other and the average absolute relative deviation were in the range of 0.1-28.3%. The effects of pressure, temperature, time, and ligand to metal ratio (5:1 to 75:1) on the extraction efficiency of metal ions were also systematically investigated. The extraction efficiency was 100% for Ni2+ and 95.9% for Cu2+ in scCO2 with the system of ligand 1, ultrapure water, and perfluoro-1-octanesulfonic acid tetraethylammonium salt (PFOAT) under the optimized conditions (25 MPa, 313 K, 90 min, and ligand to metal ratio of 10). Although all ligands exhibited good efficiency for Ni2+ (>85%) and Cu2+ (>70%) extraction, the extraction of mixed metal ions indicated that the bipyridine derivatives had low selectivity. Finally, the detailed calculation results exhibited that the extraction constants (Kex) of the metal ions increased with the increase of the extraction efficiency in the same extraction system for each same metal ion.  相似文献   

14.
《分离科学与技术》2012,47(8):1831-1841
Abstract

The behavior of zirconium and hafnium in PEG 2000‐Na2SO4‐HCl aqueous biphasic system has been investigated. The dependences of HCl concentration (0.185–0.55 M), extraction temperature (298–318 K), and extraction time (5–120 min) on distribution ratios have been determined. Extraction of this metals in PEG 2000‐Na2SO4‐H2SO4 and PEG 2000‐Na3Cit‐HCl systems has been also studied. The sulfate and citrate complexes of Zr and Hf prefer salt‐rich phase in contrast to chloride complexes which pass into PEG rich phase in about 50% (w/w) to the greatest degree in room temperature and at short extraction time. The increase of distribution ratios (D*Zr=3.75, D*Hf=4.31) was observed after addition of water soluble organic ligand ‐ tiron (4,5‐dihydroxy‐m benzenedisulfonic acid disodium salt). The results obtained in studied conditions are not very useful for the separation of zirconium and hafnium.  相似文献   

15.
Extraction of a metal ion from its oxide using ligand assisted supercritical carbon dioxide (SC CO2) comprises namely ionisation of metal oxide, in-situ chelation of metal cation with the ligand to form metal chelate/adduct and subsequently its extraction. Understanding of the mass transfer of chelate/adduct is very important in deciding the overall performance of the in-situ supercritical fluid extraction (ISCFE) process. For the present study neodymium (Nd) is selected as a model metal ion for its extraction from oxide using a mixed ligand system containing thenoyl tri-fluoroacetone (TTA) and tri-butylphosphate (TBP). Extraction studies have been performed at 35 MPa and 60°C for the prepared Nd-TTA-TBP adduct as well as for neodymium oxide (Nd2O3). The rate of dissolution starting from oxide and TTA-TBP adduct of Nd have been calculated and compared with the equilibrium values based on dissolution studies at the same conditions of temperature and pressure. During the extraction starting from oxide, the ligands TTA and TBP are also co-extracted with the adduct as these are highly soluble in SC CO2. Mass transfer coefficient has also been estimated for the steady state during the dynamic extraction. It is observed that the rate of extraction and mass transfer coefficient increase with flow rate of SC CO2.  相似文献   

16.
In this study, a new Schiff base (H4TSTE) was synthesized and characterized by elemental analysis, FT-IR, NMR and MS spectral data. Liquid–liquid extraction process was performed for removal of Cu(II), Mn(II), Ni(II), Pb(II) and Zn(II) from aqueous solutions by means of H4TSTE. The extractions were investigated depending on the concentration of picric acid, metal ion and H4TSTE ligand. Response surface methodology (RSM) was first applied to optimize metal ion-binding properties of H4TSTE. The extraction efficiency was estimated to be >98% for all metals by models. Under the same conditions, the extraction efficiency was experimentally found to be >97% with a relative standard deviation within ±0.10 (N = 4), indicating the suitability of the models.  相似文献   

17.
Liquid-liquid extraction of cadmium ions from 55-65 w% “black” phosphoric acid from a Nissan H process with diphenyldithio-phosphinic acid (DPP) or dicyclohexyldithiophosphinic acid (DCP)dissolved in an alkane(c12or c16) at 90°C was investigated.The rate of extraction of Cd from chemically pure phosphoric acid (55 w% H3Po4,90°C) is mainly determined by film diffusion of cadmium ions in the phosphoric acid phase to the interface. In the extraction from “black” acid, mass transfer in the organic phase or chemical reaction (ligand exchange) is probably the rate limiting step. An apparent mass-transfer coefficient (based on -5 [Cd] in the phosphoric acid phase) of about 1.6?10?5 m/s was obtained for the extraction from “black” acid.

A fast decompositon of DPP was observed and in a batch experiment the Cd concentration was already more than 50% of the initial value after 6 hours. This phenomenon is probably caused by the formation of solid complexes with Cu, Cd and Zn, which are dispersed in the phosphoric acid phase and then oxidized. The decomposition of DCP proceeded much slower and after 30 hours the Cd concentration was still below 50% of the initial value. Cu formed a solid complex with DCP, whereas t.he Cd and Zn complexes were soluble in the organic phase. A surface decomposition rate constant of the free ligand in the organic phase of 4?10?8m/s was obtained.  相似文献   

18.
The synergic solvent extraction system of tri-n-butyl phosphate (TBP) and FeCl3 (or ionic liquids, ILs) has been extensively studied for selective extraction of Li from Mg-containing brines. However, Cyanex 923 (C923), which extracts many metals stronger than TBP, has not yet been examined for Li/Mg separation. Here, we report on the unexpected observation that the C923/FeCl3 system has opposite Li/Mg selectivity compared to the TBP/FeCl3 system. Detailed investigations show that the opposite selectivity of the C923/FeCl3 (or IL) system is due to three factors: (1) the strong extraction of Fe by C923 leads to a low concentration of [FeCl4] in the system, which is essential for Li extraction; (2) C923 in combination with an IL extracts Mg strongly by an ion-pair mechanism; (3) most importantly, C923 extracts Mg by solvation, resulting in an insufficient concentration of C923 for Li extraction. The unexpected poor Li/Mg selectivity of C923 highlights the irreplaceable role of TBP in the selective recovery of Li.  相似文献   

19.
The direct selective separation of the trivalent actinides americium and curium from a simulated Plutonium Uranium Refining by EXtraction (PUREX) raffinate solution by a continuous counter-current solvent extraction process using miniature annular centrifugal contactors was demonstrated on a laboratory scale. In a 32-stage spiked test (12 stages for extraction, 16 stages for scrubbing, and 4 stages for Am/Cm stripping), an extractant mixture of CyMe4BTBP and TODGA in a TPH/1-octanol mixture was used. The co-extraction of some fission and corrosion product elements, such as zirconium and molybdenum, was prevented by using oxalic acid. Co-extracted palladium was selectively stripped using an L-cysteine scrubbing solution and the trivalent actinides were selectively stripped using a glycolic acid-based stripping solution. It was demonstrated that a selective extraction and high recovery of > 99.4% of the trivalent minor actinides was achieved with low contamination by fission and corrosion products. The product contained 99.8% of the initial americium and 99.4% of the initial curium content. The spent solvent still contained high concentrations of Cu, Cd, and Ni. The experimental steady-state concentration profiles of important solutes were determined and compared with those from computer-code calculations.  相似文献   

20.
A supercritical fluid extraction (SFE) method is described for extracting lipids from fried-food samples. Response surface analysis was used to study the effects of variables, including pressure, temperature, flow rate, and modifier (methanol) on lipid extraction by SFE. The analysis of variance for the response variables indicated that the models developed were satisfactory with coefficients of determination of 0.95 and 0.92 for chicken nuggets and potato fries, respectively. The models predicted that increasing the pressure increased the percentage lipid extracted for both chicken nuggets and potato fries. In addition, the pressure by temperature interactions were significant for chicken nuggets and potato fries. Slight differences in fatty acid composition were observed between SFE and the Goldfisch method. The SF extracts contained traces of C12:0, C20:0, and C24:0 in chicken nuggets and C14:1, C18:3, C22:0, and C23:0 in potato fries, respectively, which are not found in the Goldfisch extracts. The optimal conditions for extraction are: 53 MPa, 150°C, 4 mL/min, and 10% modifier for chicken nuggets and 53 MPa, 150°C, 3 mL/min, and 0% modifier for potato fries. To duplicate the results of exhaustive Goldfisch extraction with petroleum ether, SFE conditions of 44 MPa, 80°C, 3 mL/min, and 0% modifier were used to produce similar results for both chicken nuggets and potato fries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号