首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《分离科学与技术》2012,47(13):1831-1842
Abstract

The applicability of crossflow microfiltration (CFMF) to the removal of metal ions from liquid solutions was studied. Three treatment processes were employed in this study. The first process was filtration of liquid solutions containing metal ions by CFMF. The second process was CFMF with membranes precoated by CaCO3 cake. The third process used suspension flocculation as a pretreatment step before CFMF. It was found that CFMF or CFMF with precoated membranes could not remove the metal ions (Cu2+, Mn2+ and Fe2+) from water efficiently. On the contrary, CFMF with suspension flocculation as a pretreatment could remove the metal ions from water completely under suitable pH values. The unsteady-state permeate flux for CFMF with suspension flocculation increased with an increase in temperature but decreased with an increase in pH of the liquid solutions. In addition, an optimal permeate flux existed in the relationship among the permeate flux, crossflow velocity, membrane pore size, and pressure drop. Furthermore, the unsteady-state permeate flux obtained experimentally for CFMF with suspension flocculation could be predicted by a mathematical model developed previously if an equivalent diameter of the flocs in the suspension was used in the model.  相似文献   

2.
《分离科学与技术》2012,47(14):2917-2931
Abstract

A mathematical model based on a hydrodynamic theory and mass balance was developed for the prediction of the unsteady-state permeate flux in crossflow microfiltration under the influence of particle size distribution. Experiments were also conducted in a membrane filtration cell to verify this model. Spherical polystyrene latex particles of 0.303, 0.606, and 1.020 μm were used to make suspensions of various particle size distributions. The flow of the suspension in the channel of the filtration cell was controlled under the laminar flow region. It was found that the unsteady-state permeate flux increased as the mean particle size of the suspension was increased. Moreover, the model predicted satisfactorily the unsteady-state permeate flux under the effect of particle size distribution.  相似文献   

3.
《分离科学与技术》2012,47(12):1689-1697
The tubular membrane filtration system is widely applied to solid-liquid separation processes. Any improvements to the filtration module would increase separation efficiency, thus reducing operating costs. In this experiment, PMMA powder with an average particle diameter of 0.8 µm was filtered by a ceramic tubular membrane with an average pore size of 0.2 µm, and the impacts of the operating variables, such as suspension concentration, the filtration pressure, and the crossflow velocity on the permeate flux were discussed. In order to understand the increased permeate flux, the proposed module is comparable to the tubular membrane filtration module, but with an additional side stream under the same filtration mass flow rate. In addition, variations of shear force on the membrane surface are analyzed by CFD simulation, and the influence of backwash operations on the permeate flux is discussed. The results show that the side stream membrane filtration increased the shear force on the membrane surface, reduced fouling on the membrane surface, and increased the permeate flux. Furthermore, a backwash operation with a side stream flow channel could effectively clean the particles deposited in the module, thus, increasing the permeate flux.  相似文献   

4.
Microfiltration processes are frequently used to separate solids from aqueous suspensions. The rejection of suspended matter is facilitated by means of a size exclusion mechanism and is affected by membrane properties, characteristics of the suspension and operating conditions. Therefore, the filtration performance of a single polymeric hollow-fibre membrane was investigated by monitoring the permeate flux decline for a filtration at constant transmembrane pressure (TMP). For these bench-scale experiments, a model suspension consisting of silica particles in xanthan gum solutions was used in order to represent the characteristics of biological suspensions such as activated sludge properly. In the framework of this study, it was confirmed that the permeate flux declines rapidly during the first stage of filtration until an equilibrium of particle deposition and entrainment is reached. The steady-state permeate flux was found to increase with an increase in cross-flow velocity, a decrease in solid concentration, a decrease in particle size (for this ratio of particle to pore diameter) and a decrease in apparent viscosity of the suspension. However, the equilibrium permeate flux was not affected by variations in TMP, which is in agreement with the limiting flux theory.  相似文献   

5.
提出了面向过程的陶瓷膜设计基本研究框架,分析了膜的孔径分布与悬浮液颗粒体系粒径分布对过滤过程的影响,提出采用堵塞因子来表征膜的初始堵塞污染情况,建立了颗粒体系微滤过程中的膜微观结构与性能关系新模型,不仅可以计算膜通量随时间的变化,且能预测陶瓷膜结构参数对膜通量的影响.模拟结果与实验值有较好的一致性.  相似文献   

6.
提出了面向过程的陶瓷膜设计基本研究框架 ,分析了膜的孔径分布与悬浮液颗粒体系粒径分布对过滤过程的影响 ,提出采用堵塞因子来表征膜的初始堵塞污染情况 ,建立了颗粒体系微滤过程中的膜微观结构与性能关系新模型 ,不仅可以计算膜通量随时间的变化 ,且能预测陶瓷膜结构参数对膜通量的影响 .模拟结果与实验值有较好的一致性  相似文献   

7.
《分离科学与技术》2012,47(7):1771-1784
Abstract

The paper reviews the effect of particle size distribution and pore size distribution on granular bed filter and crossflow microfiltration performance. The experimental results of the granular bed filter with pollen particles in suspension showed that the presence of large particles improved the filter efficiency of smaller particles in suspension. Microfiltration results with bi and tri‐modal latex suspensions showed that the permeate flux and the quality were significantly affected by the particle size and its distribution, especially when the particle size was smaller than the pore size of the membrane. The mathematical model simulation results of granular bed filtration show that media pore size distribution is an important parameter of filtration for the particle removal and pressure drop across the filter.  相似文献   

8.
The efficiency of crossflow microfiltration processes is limited by membrane fouling and concentration polarization leading to permeate flux decline during operation. The experiments that were carried out in the laboratory were conducted to determine and investigate the performance, behaviour and the fouling susceptibility of new ceramic tubular microfiltration membranes during the crossflow filtration of yeast suspensions. The tubular membranes of nominal pore size 0.5 microns were fouled over a varied range of concentration, temperatures, pH, crossflow velocities and system pressures. The typical filtration conditions were at a temperature of 25°C, a system pressure of 1.5 bar and a concentration of 0.03 g/L yeast suspension. These parameters varied during subsequent investigations. After each experiment, the membrane and the rig were cleaned using a three stage cleaning process and was reused in order to replicate industrial filtration conditions. The effects of repeated fouling and cleaning cycles upon membrane flux over time and cleaning efficiency are investigated and their influence over time is also documented. For every experiment, the flux data was recorded over a 50 min period and the membrane was changed after the PWF declined considerably due to excessive fouling over time. Chemical cleaning consisted of a sequential application of a 1% caustic solution through the rig followed by a 2% hypochlorite solution and a 2% nitric solution, all at 50°C. The permeate flux was shown to decrease with filtration time during the development of the fouling layer. Once the fouling layer was developed and established, there appeared to be a leveling of permeate flux. The experimental results are presented in the report and the flux values at different conditions are presented.  相似文献   

9.
An experimental study was carried out to evaluate flux performance and solids retention efficiency of a ceramic membrane system in the microfiltration (MF) of a primary municipal sewage effluent. The importance of membrane pore size and MF operating conditions on the removal of suspended solids (SS) and reduction of total dissolved solids (TDS) is demonstrated. With properly defined membrane parameters (eg pore size) the MF process was shown as being able to produce a permeate quality better than the required EC regulatory standards concerning urban wastewater treatment for suspended and total solids reduction. The economics of the membrane process depend largely on flux performance which was seriously impeded by severe membrane fouling, especially in‐pore adsorption/deposition of particles. The critical influence of membrane fouling on the flux reduction and change of solids retention characteristics of the membrane system was analysed. Two techniques were employed and evaluated in an endeavour to enhance permeate flux: (i) minimisation of surface particle accumulation by employing a helically wound baffle installed inside the crossflow channel to produce a helical flow pattern and vortices encompassed in secondary flow, and (ii) reduction of in‐pore fouling by employing an automated high frequency backflushing programme. Finally, this paper highlights the relationship between the flux enhancement mechanism and increased soluble solids transmission rate at elevated filtration temperature and when the backflush technique was applied. The increased total dissolved solids concentration in the permeate has profound implications on how the backflush technique should be implemented. © 1999 Society of Chemical Industry  相似文献   

10.
溶液环境对陶瓷膜微滤微米级颗粒悬浮液的影响   总被引:7,自引:1,他引:6  
本文研究了溶液环境对陶瓷微滤膜处理微米,亚微米级颗粒悬浮液过程的影响,通过测定电解质溶液种类,浓度对微滤过程渗透通量的影响,及溶液环境对微滤过程影响随颗粒粒径,膜孔径的变化,确定了溶液环境对微滤过程的影响主要是由于其引起了颗粒表面Zeta电位的变化,改变了颗粒在溶液中的分散情况,并引起了决定膜通量的颗粒粒径/膜孔径比值的变化,从而改变了微滤过程。  相似文献   

11.
This work presents a theoretical and experimental analysis of a crossflow microfiltration process of silica particles in suspension. The silica suspensions were 0.001 M of NaCl with a pH of 6 (to maintain a constant ionic force within the medium to produce a stable silica particle suspension) for three different concentrations of silica particles: 100, 300, and 500 mg L−1. The membrane used in the crossflow microfiltration experiments was a commercial polymeric membrane, microporous, asymmetric with a nominal pore diameter of 0.2 µm, manufactured by OSMONICS (Minnetonka, MN). The experiments were performed in a bench scale crossflow microfiltration system with a flat rectangular membrane cell. The permeate flux was obtained as a function of the transmembrane pressure, the crossflow velocities, and the silica particles concentration. The mathematical model describing the process takes into account the variation of the physical properties of the suspension (dynamic viscosity and mass diffusivity) with the silica concentration. The experimental data are used to predict the maximum silica concentration at the membrane surface as a function of the operating conditions.  相似文献   

12.
《分离科学与技术》2012,47(7):972-982
The objective of this study was to investigate the effects of the process variables (transmembrane pressure, flow rate, and concentration) on the permeate flux during the microfiltration of model starch suspensions, and to determine the conditions under which the use of Kenics statics mixer as a turbulence promoter is justified. A response surface methodology was used to examine the influence of the selected operating conditions on starch suspension microfiltration using a single channel ceramic membrane with 200 nm pore size. The experimental results clearly show that the improved performance of starch suspension cross-flow microfiltration can be obtained by using a Kenics static mixer, especially at lower flow rates. Compared to the operation without the turbulence promoter, the average permeate flux improvement during the filtration period ranged from 30% to 230%. As a result of the statistical analysis, the optimal conditions for starch suspension microfiltration were determined and applied to microfiltration of starch industry wastewater.  相似文献   

13.
《分离科学与技术》2012,47(11):1899-1920
Abstract

Removal of chromate from water was investigated using the surfactant enhanced crossflow filtration technique in which the cationic surfactant, cetyl trimethylammonium bromide (CTAB), was the carrier for the metal ions. The variation of chromate and surfactant rejections, and permeate flux with time were measured as a function of CTAB/chromate concentration ratio, while maintaining a constant transmembrane pressure drop, membrane pore size, and pH of the feed solution. The method was found to be effective in removing chromate from water. It was observed that the efficiency of chromate removal increased with increasing CTAB/ chromate ratio. It was also found that the chromate concentration had a significant effect on the CTAB concentration in the permeate and on the time taken to establish the secondary membrane which consists of a highly viscous surfactant phase in the hexagonal state in the absence of chromate. In the presence of chromate, permeate flux increased at the same CTAB concentration although the surfactant and chromate rejections decreased, indicating lowering of the secondary membrane resistance to permeate flow. These conclusions were confirmed by deadend filtration experiments which showed that the fouling index decreased by the addition of chromate while the opposite was valid when sodium chloride was present in the surfactant/water/electrolyte ternary system.  相似文献   

14.
Membrane filtration of biomass is usually accompanied by significant flux decline due to cake‐layer formation and fouling. Crossflow filtration with flux controlled by pumping the permeate can produce stable fluxes if a ‘critical flux’ is not exceeded. Below critical flux the transmembrane pressure is typically very low and increases linearly with imposed flux. Above the critical flux the transmembrane pressure rises rapidly signifying cake‐layer formation which is usually accompanied by a continued rise in transmembrane pressure and/or a drop in delivered flux. A range of microfiltration and ultrafiltration membranes with pore sizes from 0.22 to 0.65 µm and molecular weight cut‐off of 100 kDa was used. The feed was an activated sludge mixed liquor with concentration in the range of 3–10 g dm−3. The results show that the critical flux depends on feed concentration and crossflow velocity, being higher for higher crossflow velocity or lower feed concentration. Critical flux was also dependent on membrane type, being lower for hydrophobic membranes. Although the transmembrane pressure was higher for the larger pore size membrane, no significant difference in critical flux was observed among different pore size membranes. © 1999 Society of Chemical Industry  相似文献   

15.
《分离科学与技术》2012,47(17):2723-2747
Abstract

The migration and deposition of submicron particles in laminar crossflow microfiltration is simulated by integrating the Langevin equation. The effects of operating conditions on the particle trajectories are discussed. It is found that the Brownian motion of particles plays an important role in particle migration under a smaller crossflow velocity of suspension or a smaller filtration rate. Based on the simulated trajectories of particles, the transported flux of particles arriving at the membrane surface can be estimated. The particle flux increases with an increase of filtration rate and with a decrease of particle diameter; however, the effect of crossflow velocity on the particle flux is not obvious. The forces exerted on particles are analyzed to estimate the probability of particle deposition on the membrane surface. The probability of particle deposition increases with an increase of filtration rate, with a decrease of crossflow velocity, with a decrease of particle diameter, or with an increase of zeta potential on the particle surfaces. The simulated results of packing structures of particles on the membrane surface at the initial stage of filtration show that a looser packing can be found under a larger crossflow velocity, a smaller filtration rate, or a smaller diameter of filtered particles. Crossflow micro-filtration experiments are carried out to demonstrate the reliability of the proposed theory. The deviation between the predicted and experimental data of filtration rate at the initial period of filtration is less than 10% when the Reynolds number of the suspension flow ranges from 100 to 500.  相似文献   

16.
颗粒粒径和膜孔径对陶瓷膜微滤微米级颗粒悬浮液的影响   总被引:9,自引:0,他引:9  
通过测定颗粒悬浮液通过陶瓷微滤膜时的参透通量及污染阻力,确定了陶瓷膜处理微米级颗粒悬浮液时,颗粒粒径和膜孔径对微滤过程的影响和膜污染机理,获得了微米级颗粒悬浮液微滤过程中膜孔径的选择方法。  相似文献   

17.
《分离科学与技术》2012,47(1):12-21
Flux characteristics of oil separation from O/W emulsions using highly hydrophilic polymeric UF membrane has been investigated. The effect of using sub-millimeter filtration channel on both unsteady and steady state permeate flux is evaluated. The time-dependent flux characteristics indicated that membrane fouling has proceeded mainly according to the intermediate pore blocking mechanism modified for crossflow filtration. The steady state flux increased initially with the transmembrane pressure (TMP), then reached a plateau at a relatively low TMP of ~15 kPa, beyond which a steady operation was achieved, and there were practically no advantages of increasing the TMP. The pressure independent limiting flux increased with increasing the crossflow velocity and was found to scale with the membrane surface shear rate to the power of 0.35. The data were modeled satisfactorily using a dimensionally consistent semi-empirical model with R2 value of 0.96.  相似文献   

18.
《分离科学与技术》2012,47(2):286-309
Abstract

The static turbulence promoters presented in this work are designed to enhance filtration within tubular ceramic membranes of 0.5 micron pore size. Permeate flux enhancement still remains a topical problem during tangential crossflow filtration. The decline in flux with time is due to the usual phenomena of concentration polarization and membrane fouling, operating parameters including the system pressures, feed composition, membrane type and configuration, and the hydrodynamics within the membrane module. Solute accumulates on the membrane surface and forms a high concentration gel layer, thus increasing the effective membrane thickness and reduces its hydraulic permeability. Turbulence promoters of varying pitch lengths have been incorporated into the work to ultimately reduce the deposition of bentonite particles on the membrane surface during microfiltration. Yeast suspensions have previously been used as feed suspensions in order to compare the effectiveness of the turbulence promoters with an organic foulant. The objective of this work was to investigate the influence of static promoter geometry on flux sustainability enhancement during bentonite suspension filtration. All experiments have been conducted on a tubular ceramic membrane and the experimental membrane rig as shown in this paper. The effects of feed concentration, feed temperature, system pressures, and crossflow rates on the membrane flux sustainability were investigated. It was found that the promoters greatly improved flux sustainability and membrane efficiency over time and in some cases, a loss of 3% in membrane efficiency was realized with turbulence promoters at higher feed temperatures. The use of the turbulence promoter caused a large scouring of the membrane surface and membrane cleaning was significantly improved compared to the experiments without the promoters.  相似文献   

19.
以多孔管式炭膜为载体制备二氧化钛动态膜并开展动态膜分离油水乳化液的研究,考察了载体孔径对动态膜的截留率和稳定渗透通量的影响。实验结果表明,动态膜处理油水乳化液的截留率在98%以上,渗透液浓度低于8.3mg·L-1,达到国家环保排放要求;稳定渗透通量随载体孔径的增大先减小后增大。在实验基础上,提出了动态膜稳定渗透通量衰减率(FDR)的概念,并将FDR的变化趋势与动态膜类型进行关联研究。分析发现,FDR随载体孔径的增大先增大后减小,动态膜由完全堵塞过滤型过渡为中间堵塞过滤型;用中间堵塞过滤型动态膜过滤油水乳化液时,随着载体孔径的增大,渗透通量衰减变缓。  相似文献   

20.
以所建立的颗粒体系微滤过程中膜结构参数与渗透性能关系模型为基础,在膜孔径和颗粒粒径均为正态分布的理想条件下对膜孔径、膜厚度、孔隙率对膜稳态通量的影响进行模拟计算.结果表明:对于颗粒悬浮体系的分离存在最优膜孔径使膜通量最大,该最优孔径随颗粒平均粒径增大、颗粒粒径分布变窄而有所增大.模拟计算结果有助于深入理解膜微观结构对宏观性能的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号