首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《分离科学与技术》2012,47(20):3821-3830
Abstract

Transport behavior of iridium through a supported liquid membrane (SLM) was investigated using trioctylamine (TOA) as a mobile carrier. Iridium(IV) was almost quantitatively extracted with TOA in kerosene from a low HCl solution, and extracted Ir(IV) was stripped with an HClO4 or HNO3 solution. Based on the extraction and stripping data, transport of Ir(IV) through a TOA-SLM was performed. Iridium(IV) in the feed solution with low HCl concentration was effectively transported into the HClO4 or the HNO3 product solution. Iridium(IV) was recovered and concentrated in the 1 M HClO4 product solution by reducing the volume of strip solution relative to the volume of feed solution, yielding a sufficient enrichment factor.  相似文献   

2.
Extraction of Rh(III) from a HCl solution with N,N-disubstituted amide–containing tertiary amine (ACTA) compounds (N,N-di-n-hexyl(N-methyl-N-n-octyl-ethylamide)amine (MonoAA), N-n-hexyl-bis(N-methyl-N-n-octyl-ethylamide)amine (BisAA), and tris(N-methyl-N-n-octyl-ethylamide)amine (TrisAA)) was investigated. The ACTAs extract Rh(III) more efficiently than tri-n-octylamine (TOA), and the extraction efficiency increases with increasing number of amide groups: TrisAA > BisAA > MonoAA ? TOA. For all ACTAs, the predominant Rh(III) complex extracted from 2 M HCl is probably {[RhCl5(H2O)]·(ACTA·H)2}. The apparent basicity of the ACTAs and TOA varies in the opposite order from that observed for the Rh(III) extraction efficiency. Rh(III) can be readily back-extracted using 10 M HCl solution possessing a high selectivity over similarly loaded Pd(II) and Pt(IV).  相似文献   

3.
Abstract

The splitting of a system from biphasic to triphasic was studied in the liquid‐liquid extraction of Ir(IV) and HCl using Cyanex 923 (C923). The limiting organic concentrations (LOC) of Ir(IV), which are the maximum possible concentrations of Ir(IV) in the organic phase without the formation of a third phase, were determined under different experimental conditions. The experimental conditions investigated were: concentrations of HCl and NaCl in the aqueous phase, concentrations of C923 and a modifier (tributyl phosphate (TBP) or decanol) in the organic phase, and an organic phase made with different diluents such as n‐octane, n‐nonane, n‐dodecane, kerosene, cyclohexane, toluene, and xylene. The formation of a third phase depends on the concentration of Ir(IV) and HCl in the aqueous phase, as well as on the other experimental conditions. The third phase appeared without Ir(IV) when the concentration of HCl in the equilibrated aqueous phase was 3.5 M and the organic phase contained 10% (v/v) C923/kerosene. The maximum LOC of Ir(IV) was obtained when the initial concentration of HCl in the aqueous phase was 2 M. The LOC of Ir(IV) can be increased though the addition of typical solvent modifiers (such as TBP or decanol) in the organic phase. The LOC of Ir(IV) varied significantly when it was extracted from an aqueous solution containing different concentrations of NaCl. The values obtained for the LOC using different diluents were in the following decreasing order: toluene ≈ xylene>cyclohexane>n‐octane>n‐nonane>kerosene>n‐dodecane. No third phase was detected when toluene and xylene were used as diluents. In the case of cyclohexane, no third phase was observed when the aqueous phase contained 4 M HCl. Spectral studies were performed to investigate the chemical composition of the third phase obtained with Ir(IV)‐HCl‐C923.  相似文献   

4.
《分离科学与技术》2012,47(4):865-877
Abstract

Liquid‐liquid extraction studies of tetravalent hafnium from acidic chloride solutions have been carried out with bis(2,4,4‐trimethylpentyl) dithiophosphinic acid (Cyanex 301) as an extractant diluted in kerosene. Increase of acid concentration decreases the percentage extraction of metal. Plot of log D vs. log [HCl] gave a straight line with a negative slope of 2±0.1 indicating the exchange of two moles of hydrogen ions for every mole of Hf(IV) extractacted into the organic phase. Extraction of Hf(IV) increases with increase of extractant concentration. The plot of log D vs. log [HA] is linear with slope 2±0.1, indicating the association of two moles of extractant with the extracted metal species. The addition of sodium salts enhanced the percentage extraction of metal, and followed the order NaSCN>Na2SO4> NaNO3>NaCl. Stripping of metal from the loaded organic (LO) with HCl and H2SO4 indicated sulphuric acid as the best stripping agent. Increase of temperature increases the percentage extraction of metal indicating the process is endothermic. Regeneration and recycling capacity of Cyanex 301, extraction behavior of associated elements such as Zr(IV), Ti(IV), Al(III), Fe(III), and IR spectra of the Hf(IV)‐Cyanex 301 complex was studied.  相似文献   

5.
In this paper the use of trioctylamine (TOA) to extract HCl from Rh(III)-containing solutions generated by a supported liquid membrane (SLM) process is investigated. TOA was found to extract HCl readily (in a single contact of 3 min duration) at a molar ratio [HCl]/[TOA] equal to one. For each mole of HCl extracted an equivalent amount of H2O was found to be extracted as well. As far as Rh(III) extraction of TOA is concerned this was found to depend on the age of the solution and the Cl concentration. Prolonged aging (accelerated by heating) or [Cl]⩾3 M was found to completely suppress the extraction of Rh(III) by TOA. The chloride ion concentration effect was attrib-uted to Le Chatelier's principle while the aging effect was attributed to the aquation/conversion of the extractable RhCl63− complexes to RhCl5(H2O)2−. The aquation reaction was studied with UV–Visible spectroscopy in an effort to substantiate the solvent extraction (SX) results. On the basis of the findings of this work a combined SLM/SX process flowsheet is proposed according to which the Rh(III) and HCl co-transported through the supported liquid membrane are co-extracted by TOA and subsequently separated by differential stripping; Rh(III) with 0·5 M HCl/3 M Cl medium and HCl with NAOH.  相似文献   

6.
In order to compare the separation of Ir(IV) and Rh(III) between SnCl2 and ascorbic acid as a reducing agent, solvent extraction with Cyanex 921 and Cyanex 301 was investigated in the HCl concentration range from 1 M to 9 M. Addition of both SnCl2 and ascorbic acid led to the selective extraction of rhodium by the two extractants, leaving Ir(III) in the raffinate. Since tin was selectively extracted over Rh(I) in the presence of SnCl2, it is necessary to separate Rh(I) and tin by selective stripping from the organic phase. In the presence of ascorbic acid, the extraction percentage of rhodium by Cyanex 921 was much smaller than that in the presence of SnCl2. UV spectra was analyzed to verify the reduction reaction of both metal ions. FT-IR was analyzed between fresh and loaded organic solution. The reduction of Ir(IV) and Rh(III) in the presence of ascorbic acid was explained. Selective stripping of Rh(I) over tin from the loaded Cyanex 921 was obtained by the mixture of HCl and (NH2)2CS.  相似文献   

7.
Liquid–liquid extraction of Ir(III) and Rh(III) with Cyanex 923 from aqueous hydrochloric acid media has been studied. Quantitative extraction of Ir(III) was observed in the range of 5.0–8.0 mol dm?3 HCl with 0.1 mol dm?3 Cyanex 923, while Rh(III) was extracted quantitatively in the range of 1.0–2.0 mol dm?3 HCl with 0.05 mol dm?3 Cyanex 923 in toluene along with 0.2 mol dm?3 SnCl2. The Ir(III) was back extracted with 4.0 mol dm?3 HNO3 quantitatively from the organic phase while Rh(III) was stripped with 3.0 mol dm?3 HNO3. The extraction of Rh(III) with Cyanex 923 was not quantitative without use of SnCl2. However in the extraction of Ir(III) a negative trend was observed in the presence of SnCl2. Varying the temperature of extraction showed that the extraction reactions of both the metal ions are exothermic in nature, and the stoichiometric ratio of Ir(III)/Rh(III) to Cyanex 923 in organic phase was found to be 1:3. The methods developed were applied to the recovery of these metal ions from a synthetic solution of similar composition to that from leaching of spent autocatalysts in 6.0 mol dm?3 HCl. © 2002 Society of Chemical Industry  相似文献   

8.
The extraction and separation of Ce(IV) and Th(IV) from trivalent rare earths (RE, including scandium) in sulfate medium using di(2-ethylhexyl)-N-heptylaminomethylphosphonate (DEHAMP, L) were studied. The effects of H2SO4 concentration, extractant concentration, and temperature on the metal extraction were investigated systematically. It was found that the extraction of metal ions by DEHAMP decreases in the following order: Ce(IV) > Th(IV) > Sc(III) > other RE(III). A possible extraction mechanism was proposed and the extracted complexes as Ce(SO4)2·2L and Th(HSO4)2SO4·L were determined by the slope analysis method. Thermodynamic parameters (ΔH, ΔG, and ΔS) were calculated. The extraction reactions of Ce(IV) and Th(IV) were each exothermic processes. The loaded Ce(IV) and Th(IV) can be stripped efficiently by 3% H2O2 and 4 mol/L HCl, respectively. The extraction capacity of 0.63 mol/L DEHAMP is 30.0 g/L CeO2 and 24.4 g/L ThO2, respectively. Furthermore, a solvent extraction process to selectively extract and recover cerium and thorium from bastnaesite leaching was proposed, by which the purities of cerium and thorium products reached 97.2% and 96.5% with a yield of 85.4% and 98.8%, respectively.  相似文献   

9.
《分离科学与技术》2012,47(3):549-572
Abstract

The extraction of Ge(IV) from HCl, HNO3 and H2SO4 media in toluene solution of Cyanex 301 and Cyanex 923 is investigated. It is almost quantitatively extracted (~95%) in Cyanex 301 and Cyanex 923 at 8 molL?1 HCl but the extractions from H2SO4 and HNO3 are poor in the entire investigated range of acid molarity. Detailed investigations were carried out from HCl medium. Based on the slope analysis data the extracting species is identified as GeCl4·2R (R=Cyanex 301/Cyanex 923). The extraction of Ge(IV) is higher and comparable in diluents like toluene, n‐hexane and kerosene (160–200°C) and there is no correlation between the dielectric constant and the percent extraction. The extractants are stable towards prolonged acid contact and there is negligible loss in their extraction efficiency even after recycling them for several cycles. The extraction behavior of commonly associated metal ions namely As(V)/(III), Sn(IV), Tl(III), In(III), Ga(III), Fe(III), Al(III), Hg(II), and Cu(II) has also been investigated. Based on the partition data conditions for attaining some binary and ternary separations involving Ge(IV) have been optimized. The separation data have been fused to develop a scheme for the recovery (93%) of pure germanium (~99%) from semi conductor waste.  相似文献   

10.
Abstract

Research on the solvent extraction of ruthenium from hydrochloric acid media has been carried out using N,N'-dimethyl-N,N'-dicyclohexylmalonamide (DMDCHMA) dissolved in 1,2-dichloroethane. Ruthenium extraction percentages (%E) ranging from 50% to 80% have been achieved for HCl concentrations between 5 M and 7 M. Extraction curves exhibiting the dependence of the %E ruthenium on HCl concentration in the aqueous phases are presented, the latter solutions being obtained by dissolution of either Ru(III) or Ru(IV) salts. The influence of some experimental parameters on the %E Ru, such as the equilibration time, extractant concentrations, and hydrogen-ion activities, has been thoroughly investigated. Additionally, DMDCHMA is also adequate for extracting Pd(II) from 5 M to 7 M HCl solutions and under similar experimental conditions, %E Rh(III) is below 5%, and Pt(IV), Ir(III), and Ir(IV) cause the formation of third phases. Both Ru and Pd(II) can be successfully stripped from the loaded organic phases with water. A partition scheme to isolate Ru from a number of some associated elements has also been attempted.  相似文献   

11.
Abstract

The extraction of actinides, fission products, some non-nuclear elements, and nitric acid by N,N,N′,N′-tetraoctyl-3,6-dioxaoctanediamide (DOODA-C8) in dodecane was extensively studied. Also studied was the extraction of HNO3 and Nd(III) by the tetradodecyl analog of DOODA-C8 in dodecane. Both extractants contain two ether oxygen atoms in the backbone chain carrying the two amide groups and can thus act as tetradentate ligands. The extractability of actinides decreases in the order Pu(IV) > U(VI), Am(III) > Np(V) in the extraction from nitric acid and Pu(IV) > Am(III) >> U(VI) in the extraction from perchloric acid. Ions of di-, tri-, tetra-, hexa-, and heptavalent metals strongly differ in the extractability by DOODA-C8 but, except for lanthanides(III), there is no visible correlation of their distribution ratios with ionic radii. Due to the efficient extraction of actinides, weak extraction of fission products, and sufficient extraction capacity, DOODA-C8 is a promising extractant for the recovery of minor actinides from high-level radioactive wastes.  相似文献   

12.
Synergistic extraction of Rh(III) from relatively concentrated HCl solution was studied using two mixed solvents (di-n-hexyl sulfide (DHS)–tri-n-octylamine (TOA) and N,N′-dimethyl-N,N′-di-n-octyl-thiodiglycolamide (TDGA)–TOA) in chloroform. The Rh(III) extraction efficiency is poor when 0.5 M TOA, DHS, or TDGA is used independently. In contrast, the 0.5 M TDGA–0.5 M TOA and 0.5 M DHS–0.5 M TOA mixed solvents extract ?90% and ?70% of Rh(III), respectively, at maximum. Slope analyses and Job’s plots for the distribution ratios of Rh(III) at 2 M HCl show that the apparent stoichiometry of Rh(III):TOA:(DHS or TDGA) in the extracted complex is 1:2:1.  相似文献   

13.
Due to the similar chemical properties between the neighboring trivalent actinide elements americium and curium, their extraction behavior is often perceived as indistinguishable. In this work, the characterization of seven extraction chromatography resins (TEVA, TRU, DGA(N), Actinide, Ln, Ln2, and Ln3) for these trivalent actinides from acidic matrices (HNO3, HCl, and HBr) has provided some evidence to the contrary. In most cases, Am(III) and Cm(III) exhibit identical extraction properties. However, separation is possible with TRU and DGA(N) resins as demonstrated in this study. The extraction shows a strong dependency on the specific anion in solution that follows the order NO3?>Br?>Cl?.  相似文献   

14.
Interactions of 134Cs(I), 152,154Eu(III), and 60Co(II) ions from HCl acid solutions with tungstocerate(IV) gel matrices, dried at 50°C, have been individually investigated by the batch equilibration method. The selectivity sequence was found to be in the order: Cs(I) >Eu(III) >Co(II). The breakthrough capacities of 12‐tungstocerate(IV) for Cs(I), Eu(III), and Co(II) were found to be 1.00, 0.55, and 0.26 mmol/g of the sorbent, respectively. In addition, a mixture of these radionuclides [6.20 × 10?3 M Cs(I), 3.53 × 10?3 M Eu(III), and 1.4 × 10?3 M Co(II)], in 150 ml of 0.02 M HCl solution was passed through 1‐g 12‐tungstocerate(IV) chromatographic column. Quantitative uptake of both 134Cs(I) and 152,154Eu(III) has been achieved, while only ?22% of 60Co(II) has been retained. Then, quantitative elution of the retained fraction of Co(II) was achieved with 14 ml of 0.1 M HCl acid solution leaving Eu(III) and Cs(I) strongly retained onto the column. Quantitative elutions of Eu(III) and Cs(I) were achieved by passing 20 ml of 0.3 M HCl and 16 ml of 2 M HCl acid solutions, respectively.  相似文献   

15.
Abstract

An IR-spectroscopy method is used to examine the state of nonane diluted bis(2,4,4-trimethylpentyl)dithiophosphinic acid (HR) in the presence of various electron-donor additives (L). Trioctyl amine (TOA), n-octanol, trioctylphosphine oxide (TOPO), tributylphosphate (TBP), and triisobutylphosphine sulfide (TIBPS) were used as additives. The formation of hydrogen bonded complexes (H-complexes) via proton transfer and a [TOAH+][R?] ion pair was shown to occur in the system containing HR and TOA. For the other additives, except n-octanol, during the formation of the H-complexes, hydrogen bonding without proton transfer takes place. In the HR and n-octanol mixture H-complexes having a structure in which the acid exhibits both proton and electron-donor properties are formed. The concentrations of the monomers (CHR ) and the activity coefficients for the dithiophosphinic acid (γ HR(tot) ) in the presence of the additives were calculated. It was shown that CHR and γ HR(tot) depend essentially on the type of additive and that their values decrease when passing from n-octanol to TOA. The strength of the interaction between HR and L decreases in the series TOA > TOPO > TBP > TIBPS > n-octanol. This series coincides with the basicity series of the additives. An antagonistic effect takes place when zinc is extracted with the HR and L mixture, where L is the trialkyl amine (TAA), the trialkyl phosphine oxide (TAPO), TBP, and n-octanol. A decrease in extraction is observed in the series TAA > TAPO > TBP > n-octanol. This series coincides with the series for decreasing HR activity in the presence of additives. Thus a decrease in the extractant activity resulting from the interaction between HR and L is the determinant factor during zinc extraction with bis(2,4,4-trimethylpentyl)dithiophosphinic acid in the presence of the electron-donor additives.  相似文献   

16.
To extract iridium(III), various physicochemical parameters were studied. 2-Octylaminopyridine was used for the extraction of iridium(III) from acetate medium at 8.5 pH. Quantitative extraction of iridium(III) was achieved via ion-pair formation of cation [2-OAPH+] and anion [Ir(CH3COO)4]?. The stripping of iridium(III)-laden organic phase was carried out 2 M HCl (3 × 10 mL) . The stoichiometry of the extracted ion–pair complex was found to be 1:4:1 (metal: acetate: extractant). The extracted species [2-OAPH+. Ir(CH3COO)4?] is assumed to be an ion association product of [Ir(CH3COO)4] ? and [2-OAPH]+. The proposed method was successfully used in the separation of iridium(III) from binary and ternary mixtures. Analysis of various alloy samples was also carried out.  相似文献   

17.
《分离科学与技术》2012,47(7):1445-1458
Abstract

The gel-liquid extraction of U(VI), Th(IV), Ce(III), and Co(II) has been investigated in the 0.01 to 2 M HNO3 range using a gel prepared by swelling styrene divinylbenzene with di-(2-ethylhexyl)phosphoric acid. Obtained results indicate that all of the tested cations can be extracted and that the extraction coefficients increase in the order Ce(III) < Co(II) < Th(IV) < U(VI) and generally decrease with acidity. Under suitable conditions, separation of Th(IV), Ce(III), or Co(II) from U(VI) or of Th(IV) from Ce(III) can be achieved. Kinetic studies indicate that the extraction process is controlled by a progressive shell sorption mechanism.  相似文献   

18.
The separation of Pd(II) from Pt(II), Ir(III) and Rh(III) with trioctylphosphine oxide (TOPO) in heptane using centrifugal partition chromatography (CPC) has been investigated for the first time. The extraction of Pd(II) has been studied by CPC and batch solvent extraction. The distribution ratios for Pd(II) determined by both methods agree well. In low HCl concentrations (<0.1 M), the extracted species was PdCl2.(TOPO)2, irrespective of the chloride concentration, while at acid concentrations above 0.1 M, the Pd was extracted as the ion pair, 2(TOPO.H+).PdCl4 2-. Base line separation of Pd(II) and Pt(II) in CPC was obtained under a variety of chloride and HCl concentration with the average number of theoretical plates being 390 ± 40 at a flow rate of 0.47 ± 0.05 mL/min.  相似文献   

19.
ABSTRACT

Extraction resins, of the type of Levextrel, (which is a collective term for styrene/divinylbenzene based copolymers of predominantly macroporous structure that contain a selective extractant) are important for the recovery and separation of metal ions, as they combine features of solvent extraction and ion exchange resins. This paper presents the results of the adsorption of heavy rare earth ions (Ho(III), Er(III), Tm(III), Yb(III), Lu(III) and Y(II1)) from hydrochloric acid solutions at 0.2 mol/L ionic strength and 50°C by the extraction resin containing di (2,4,4-trimethyl pentyl) phosphinic acid (Cyanex 272) and the chromatographic separation of (Er(III), Tm(III) and Yb(III)). Technological separation products, with purity and yield of Tm2O3 >99.97%, >80%; Er2O3 >99.9%, >94% and Yb2O3 >99.8%, >80% respectively, have been obtained from a feed having the composition Tm2O3 60%, Er2O3 10%, and Yb2O3 3%, the others 27%.

The distribution coefficients, extraction equilibrium constants and separation factors have been determined as a function of acidity, loading of the resin and rare earths, flow rates and column ratios. The resolutions and efficiencies of separation of Er/Tm/Yb each other have been calculated. The stoichiometry of the extraction of rare earth ions has been suggested as well.  相似文献   

20.
The solvent extraction of antimony (in), bismuth (111), lead (II) and tin (IV) from aqueous hydrochloric acid solutions by bis(2,4,4-trimethylpentyl) phosphinodithioic acid (Cyanex 301® denoted HL) in kerosene + 10 % v/v n-decanol was investigated. Lead (II), tin (IV), bismuth (III) and antimony (III) are efficiently extracted by Cyanex 301® up to about 5, 6, 9 and 11 mol.L1? HCl, respectively. The corresponding extracted species were identified as PbL2, SnCl2L2, BiL3 and SMvj. However, it was observed that Sn (IV) can be moderately extracted from the aqueous phase by the mere mixture of kerosene and n-decanol above 9 mol.L1?HCl. In all cases, extraction equilibrium was reached within a few minutes. Finally, a thermodynamic modelling of the extraction system was developed in the particular case of lead (II).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号