首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《分离科学与技术》2012,47(14):1969-1984
Abstract

Zeolites from abundant natural deposits were investigated by the Bureau of Mines for efficiently cleaning up mining industry wastewaters. Twenty-four zeolite samples were analyzed by x-ray diffraction and inductively coupled plasma. These included clinoptilolite, mordenite, chabazite, erionite, and phillipsite. Bulk densities of a sized fraction (-40, +65 mesh) varied from 0.48 to 0.93 g/mL. Attrition losses ranged from 1 to 18% during an hour-long shake test. The 24 zeolites and an ion-exchange resin were tested for the uptake of Cd, Cu, and Zn. Of the natural zeolites, phillipsite proved to be the most efficient, while the mordenites had the lowest uptakes. Sodium was the most effective exchangeable ion for exchange of heavy metals. Wastewater from an abandoned copper mine in Nevada was used to test the effectiveness of clinoptilolite for treating a multi-ion wastewater. The metal ions Fe3+, Cu2+, and Zn2+ in the copper mine wastewater were removed to below drinking water standards, but Mn2+ and Ni2+ were not. Calcium and NH4 + interfered with the uptake of heavy metals. Adsorbed heavy metals were eluted from zeolites with a 3% NaCl solution. Heavy metals were concentrated in the eluates up to 30-fold relative to the waste solution. Anions were not adsorbed by the zeolites.  相似文献   

2.
A dye ligand Cibacron Blue F3GA, was covalently coupled with polyhydroxyethylmethacrylate (PHEMA) microbeads in the 150–200 μm particle size range. The sorbent carrying 22.3 μmol Cibacron Blue F3GA per gram of polymer was then used to remove Pb(II), Cd(II), Cu(II) and Zn(II) from aqueous solutions in a packed-bed column system. Heavy metal ion adsorption capacity of the column was investigated as a function of heavy metal ion-bearing solution flow rate and the inlet heavy metal ion concentration. The maximum metal ion uptake values found were: 80.60, 96.98, 78.36, 103.98 μmol/g polymer for Pb(II), Cd(II), Cu(II) and Zn(II), respectively. The heavy metal adsorption capacity of the microbeads decreased with an increase in the circulation rate of aqueous solution. The order of affinity based on molar uptake was Zn(II)>Cd(II)>Pb(II)>Cu(II). Removal percentages of heavy metals related to flow time were determined for different flow rates and initial metal ion concentrations. It was observed that PHEMA microbeads carrying Cibacron Blue F3GA can be regenerated by washing with a solution of nitric acid (0.05 M). The desorption ratio was as high as 98.5%.  相似文献   

3.
Unactivated attapulgite was characterised and utilised as an adsorbent for the removal of heavy metal and neutralisation of acid mine drainage (AMD) from a gold mine. Adsorption experiments were carried out by agitation of a fixed amount of attapulgite with a fixed volume of AMD in a thermostatic shaker for varying times. Attapulgite showed that it can neutralise acid mine drainage as the pH after 4 h was 7.11. The results showed that metal ion removal after 4 h was 100% for Cu(II) and Fe(II), 93% for Co(II), 95% for Ni(II) and 66% for Mn(II) using a 10% (w/v) attapulgite loading. The experimental data best fit the Langmuir Isotherm with maximum adsorption capacities for Cu(II), Co(II), Mn(II), Fe(II) and Ni(II) being 0.0053, 0.0044, 0.0019, 0.01, and 0.0053 mg/g, respectively. The adsorption process fitted well the pseudo first order kinetics for Co(II) and Cu(II) and pseudo second order for Ni(II), Mn(II) and Fe(II). Thermodynamic data show that Cu(II), Co(II), Fe(II) and Ni(II) adsorption was thermodynamically spontaneous whilst Mn(II) was not thermodynamically spontaneous. The process is endothermic for Cu(II), Co(II), Mn(II), and Ni(II) and exothermic for Fe(II). Spent attapulgite (attapulgite that has already been used to remove metals) could be reused twice without regeneration.  相似文献   

4.
The uptake of Cu(II), Pb(II), Zn(II) and Ni(II) was investigated both individually and from mixed metal ion solutions using Sphagnum moss biomass immobilised in a polyurethane support. The data were evaluated using the Langmuir isotherm equation, and sorption capacities were calculated for different concentration ranges. It was concluded that care must be taken in presentation and interpretation of results when this modelling approach is applied at low concentrations. Repeated metal loading cycles also gave lower values for sorption capacity compared with the maximum potential value, due to equilibrium effects. The uptake capacity for the different metals on a weight basis was in the order lead > copper > zinc > nickel, but on a molar basis this changed to copper > lead > nickel > zinc. Sorption from a multi‐component metal system showed that lead and copper competed equally for binding sites and much more effectively than zinc and nickel. Equations were derived to predict the percentage effect on a given metal ion of other metals in a multi‐metal system based their behaviour in the relevant single and binary systems. Copyright © 2005 Society of Chemical Industry  相似文献   

5.
The phosphorylated sago starch‐extraction residue (P‐SR) was produced for the removal of heavy metal from wastewater. The phosphoric ester in the phosphorylated residue was evaluated by means of infrared microspectrometry and solid‐state NMR. In this study, the phosphorus contents of produced P‐SR, phosphorylated cellulose (P‐C), and phosphorylated sago starch were 31.7, 34.2, and 4.6 mg/g, respectively. The phosphorus contents of P‐C and sago starch were clearly different because of the difference of each structure. The maximum sorption capacities of heavy metals (cadmium, lead, copper, and zinc) in single heavy metal sorption on P‐SR were 0.20, 0.25, 0.36, and 0.24 mmol/g (Cu > Pb > Zn > Cd), respectively. On the other hand, the amount of sorbed heavy metals in coexisted heavy metal sorption on P‐SR followed the order of Pb > Cu > Cd > Zn that was different from the relations of maximum sorption capacities for individual heavy metals. The heavy metal sorption behavior in single and coexisted heavy metal solution for P‐SR were different and P‐SR showed the intrinsic heavy metal sorption affinity, called as selective sorption. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
Various adsorbent materials have been reported in the literature for heavy metal removal. We have developed a novel approach to obtain high metal sorption capacity utilising cysteine containing adsorbent. Metal complexing aminoacid-ligand cysteine was immobilised onto poly(hydroxyethylmethacrylate) (PHEMA) microbeads. PHEMA-cysteine affinity microbeads containing 0.318 mmol cysteine/g were used in the removal of heavy metal ions (i.e. copper, lead and cadmium) from aqueous media containing different amounts of these ions (50–400 mg/l for Pb(II) and Cd(II), 25–60 mg/l for Cu(II)) and at different pH values (4.0–7.0). The maximum adsorption capacity of heavy metal ions onto the cysteine-containing microbeads under non-competitive conditions were 0.259 mmol/g for Pb(II), 0.330 mmol/g for Cd(II) and 0.229 mmol/g for Cu(II). The affinity order was observed as follows: Cd(II)>Pb(II)>Cu(II). The competitive adsorption capacities of the heavy metals were 0.260 mmol/g for Cd(II) and 0.120 mmol/g for Cu(II). Pb(II) adsorption onto cysteine-immobilised microbeads was zero under competitive conditions. The affinity order was as follows: Cd(II)>Cu(II)>Pb(II). The formation constants of cysteine–metal ion complexes have been investigated applying the method of Ruzic. The calculated value of stability constants were 1.75×104 l/mol for Pb(II)–cysteine complex and 4.35×104 l/mol for Cd(II)–cysteine complex and 1.39×104 l/mol for Cu(II)–cysteine complex. PHEMA microbeads carrying cysteine can be regenerated by washing with a solution of hydrochloric acid (0.05 M). The maximum desorption ratio was greater than 99%. These PHEMA microbeads are suitable for repeated use for more than three adsorption–desorption cycles without considerable loss in adsorption capacity.  相似文献   

7.
Potentially, biosorption is an economic process for metal sequestering from water. Carboxylated alginic acid showed high uptake capacities for heavy metals of 5-6 meq/g dry mass. For application to actual plating waste-water, the carboxylated alginic acid was immobilized using PVA. In order to remove chelating or organic materials in plating wastewater, oxidation using sodium hypochlorite was performed as a pretreatment. When carboxylated alginic acid bead was applied in a packed-bed contactor, the breakthrough point of copper ion in the acid-alkaline wastewater appeared around 350 bed volumes; the breakthrough point of nickel ion in the chelating wastewater emerged around 200 bed volumes. The adsorption capacity for heavy metal of the carboxylated alginic acid bead was higher than that of a commercial ion exchanger (IR-120 plus) in plating wastewater.  相似文献   

8.
结构态亚铁是一种具有高活性结构的亚铁化合物,具有比表面积大、还原性强等优点,被广泛应用于研究处理重金属废水和有机废水.然而,目前结构态亚铁处理含高浓度重金属的实际工业废水的重金属去除效果、作用条件、处理工艺还缺乏深入探究.文中选取3种具有代表性的实际工业废水,探究结构态亚铁对废水中重金属的去除效果,设计能够满足排放要求...  相似文献   

9.
《分离科学与技术》2012,47(8):1313-1320
The removal characteristics of Cd(II), Cu(II), Pb(II), and Zn(II) from model aqueous solutions by 5 natural Mongolian zeolites were investigated. The adsorption of metals on zeolites reached a plateau value within 6 h. The adsorption kinetic data were fitted with adsorption kinetic models. The equilibrium adsorption capacity of the zeolites was measured and fitted using Langmuir and Freundlich isotherm models. The order of adsorption capacity of zeolite was Pb(II) > Zn(II) > Cu(II) > Cd(II). The maximum adsorption capacity of natural zeolite depends on its cation exchange capacity and pH. The leaching properties of metals were simulated using four leaching solutions. The results show that natural zeolite can be used as an adsorbent for metal ions from aqueous solutions or as a stabilizer for metal-contaminated soils.  相似文献   

10.
《分离科学与技术》2012,47(18):2435-2450
Abstract

Conventional treatment methods for removal of heavy metals from metal finishing operations are usually energy-intensive and costly. Micellar-enhanced ultrafiltration (MEUF) with synthetic surfactants is a recently developed technique which can remove heavy metals and other small molecular weight ions from wastestreams at relatively lower costs and without a phase change. Lecithin, a natural, inexpensive, nontoxic, and biodegradable surfactant exhibits emulsifying characteristics which can be used in a MEUF. The binding of various lecithins to cadmium, copper, lead, nickel, and zinc—in a mixture and individually—was studied using a continuous diafiltration method. This technique uses small volumes of toxic waters and produces an entire isotherm with just one experiment. In the presence of all five heavy metals, the lecithin in this study showed the following affinity: Cu > Cd ~ Zn > Ni. In experiments when only one metal was present, lecithin exhibited the following affinity: Ni > Cu ~ Zn > Cd. Lead was not bound significantly in either scenario.  相似文献   

11.
Heavy metals pollutants are nonbiodegradable and their bioaccumulation results in detrimental environmental consequences. Therefore, it is important to effectively remove toxic heavy metal waste from industrial sewage. Thus, the main goal of this research is to synthesize an ideal cellulose-based adsorbent from palm-based waste materials (agro waste) in order to be utilized in real-life practical applications with low cost as such removing common toxic heavy metals from industrial effluents. A poly(methyl acrylate) grafted palm cellulose was synthesized via a free-radical initiation process, followed by an oximation reaction to yield poly(hydroxamic acid) ligands. The adsorption capacity (qe) of poly(hydroxamic acid) ligands for metal ions such as copper (Cu2+), iron (Fe3+), and lead (Pb2+) were 325, 220, and 300 mg g−1, respectively at pH 6. In addition, the X-ray photoelectron spectrometry results are to be proved the binding of metal ions, for instance, Cu(II) ions showed typically significant BEs of 932.7 and 952.0 eV corresponding to the Cu2p3/2 and Cu2p1/2 species. The heavy metal ions adsorption followed a pseudo-first-order kinetic model pathway. The adsorption capacity (qm) is also derived from the Langmuir isotherm linear plot, which does not showed good correction coefficients. However, the results were correlated to the Freundlich isotherm model, where the R2 value showed significance (>0.98), indicating that multiple layer adsorption occurs on the synthesized ligand. The synthesized polymeric ligand is an excellent adsorbent for the removal of heavy metals from the industrial wastewater. In addition, the metal analysis results showed that about 98% removal of copper and iron ions from electroplating wastewater including lead, nickel, and chromium can be removed up to 85–97%.  相似文献   

12.
This contribution provides insight on the elimination of heavy metals from water resources using magnetic separation. Nanocomposites based on magnetite and chitosan were prepared. An exhaustive characterization of the magnetic adsorbents was developed. Adsorption assays were performed in batch using Cu, Zn, Cd, and Cr as model heavy metals. The efficiency of magnetic adsorbents followed the order: Cu > Cd > Zn > Cr, with maximum values of 188, 159, 72, and 46 mg of Me/g of nanocomposite, respectively. Kinetics and mechanistic issues were studied. The magnetic materials were efficient for five to eight cycles using Cu(II),Cd(II), and Cr(VI).  相似文献   

13.
Fe3O4/talc nanocomposite was used for removal of Cu(II), Ni(II), and Pb(II) ions from aqueous solutions. Experiments were designed by response surface methodology (RSM) and a quadratic model was used to predict the variables. The adsorption parameters such as adsorbent dosage, removal time, and initial ion concentration were used as the independent variables and their effects on heavy metal ion removal were investigated. Analysis of variance was incorporated to judge the adequacy of the models. Optimal conditions with initial heavy metal ion concentration of 100, 92 and 270 mg/L, 120 s of removal time and 0.12 g of adsorbent amount resulted in 72.15%, 50.23%, and 91.35% removal efficiency for Cu(II), Ni(II), and Pb(II), respectively. The predictions of the model were in good agreement with experimental results and the Fe3O4/talc nanocomposite was successfully used to remove heavy metals from aqueous solutions.  相似文献   

14.
纤维素黄原酸盐处理重金属废水的条件优化研究   总被引:2,自引:0,他引:2  
采用纤维素黄原酸盐处理重金属废水,对纤维素黄原酸盐的用量、pH值、反应时间等条件进行了研究。结果发现:1L含氰电镀废水(含Cr3+15mg/L、Cu2+3mg/L、Ni2+9.2mg/L、Zn2+6mg/L),加入2g纤维素黄原酸盐,调节pH8,搅拌1h,过滤,处理后的废水中Cr3+、Cu2+、Zn2+、Ni2+残余浓度分别为0.08mg/L、0.03mg/L、0.12mg/L、0.10mg/L。含有重金属盐的残渣,可用硫酸或硝酸处理,以回收重金属。  相似文献   

15.
《Polymer Composites》2017,38(2):332-340
An organic–inorganic composite cation exchanger polyvinyl alcohol Ce(IV) phosphate was prepared by the sol–gel method. The composite cation exchanger was characterized by some physicochemical properties like FTIR, TGA/DTA/DTG, XRD, SEM, TEM, EDX, and ion exchange properties to validate the structure and the ion exchange behavior. Ion exchange parameters indicated that the composite material is suitable for column operation. The ion exchange capacity of the composite ion exchanger is higher than that of the inorganic counterpart which showed that the incorporation of organic polymer polyvinyl alcohol (PVA) is responsible for prevention of the leaching of inorganic ion exchanger thereby proving mechanical stability and enhanced ion exchange properties. The distribution studies showed the selectivity toward Cu(II) ions, a heavy toxic metal ion. It was also observed that the selectivity depended upon the nature and composition of contacting solvents. The binary separation of a mixture of heavy metal ions Cu(II)–Zn(II), Cu(II)–Cd(II), and Cu(II)–Ni(II) also achieved thus composite cation exchanger proved excellent material could be effectively utilized in the treatment of discharge from copper plating, copper alloy, copper batteries, and smelting industries, whereas outstanding thermal stability of this composite ion exchanger could be utilized for the treatment of wastewater having Cu(II) ions with high temperature such as power generation and desalination plants. This composite ion exchanger with outstanding properties have potential to deal with aquatic toxicology caused by Cu(II) ions in future. POLYM. COMPOS., 38:332–340, 2017. © 2015 Society of Plastics Engineers  相似文献   

16.
Thiourea–formaldehyde (TF) and urea–formaldehyde (UF) chelating resins were synthesized and these resins were used in the separation of gold(III) ions from copper(II) and zinc(II) base metal ions. In the experimental studies, the effect of acidity on gold(III) uptake and gold(III) adsorption capacities by batch method, and loading and elution profiles of gold(III) ions, gold(III), copper(II), and zinc(II), dynamic adsorption capacities and the stability tests of TF and UF resins by column method were examined. By batch method, the optimum acidities were found as pH 2 and 0.5M HCl, and gold(III) adsorption capacities in the solutions including copper(II) and zinc(II) ions were obtained as 0.088 and 0.151 meq Au(III)/g for UF and TF resins, respectively. On the other hand, by column method, the dynamic adsorption capacities were calculated as 0.109 meq Au(III)/g with TF, 0.023 meq Au(III)/g with UF, 0.015 meq Cu(II)/g with TF, 0.0057 meq Cu(II)/g with UF, and under 6.1 × 10?5 meq Zn(II)/g with TF or UF. TF resin was more effective in the separation and the concentration of gold(III) ions from copper(II) and zinc(II) ions than UF resin. It was seen that sulfur atoms contributed the gold(III) adsorption comparing with oxygen atoms. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
李冰璟  付丹  赵伟 《净水技术》2011,30(5):115-118,154
电镀废水水质复杂,含有多种污染物,其中Ni+、Cu2+等重金属已得到良好的回收利用,但对有机污染物和氨氮的去除研究鲜见报道.本文采用铁碳微电解法对电镀废水进行预处理,可确保出水中残留重金属不影响后续生物反应,预氧化表面活性剂、光亮剂及其它助剂,提高了废水的可生化性;进而通过水解酸化和好氧膜生物反应器(MBR)的生物处理...  相似文献   

18.
The catalytic selective reduction of NO over Cu-exchanged natural zeolites (mordenite (MP) and clinoptilolite (HC)) from Cuba using NH3 as reducing agent and in the presence of excess oxygen was studied. Cu(II)-exchanged zeolites are very active catalysts, with conversions of NO of 95%, a high selectivity to N2 at low temperatures, and exhibiting good water tolerance. The chemical state of the Cu(II) in exchanged zeolites was characterized by H2-TPR and XPS. Cu(II)-exchanged clinoptilolite underwent a severe deactivation in the presence of SO2. However, Cu(II)-exchanged mordenite not only maintained its catalytic activity, but even showed a slight improvement after 20 h of reaction in the presence of 100 ppm of SO2.  相似文献   

19.
Magnetic polymethylmethacrylate (mPMMA) microbeads carrying ethylene diamine (EDA) were prepared for the removal of heavy metal ions (i.e., copper, lead, cadmium, and mercury) from aqueous solutions containing different amount of these ions (5–700 mg/L) and at different pH values (2.0–8.0). Adsorption of heavy metal ions on the unmodified mPMMA microbeads was very low (3.6 μmol/g for Cu(II), 4.2 μmol/g for Pb(II), 4.6 μmol/g for Cd(II), and 2.9 μmol/g for Hg(II)). EDA‐incorporation significantly increased the heavy metal adsorption (201 μmol/g for Cu(II), 186 μmol/g for Pb(II), 162 μmol/g for Cd(II), and 150 μmol/g for Hg(II)). Competitive adsorption capacities (in the case of adsorption from mixture) were determined to be 79.8 μmol/g for Cu(II), 58.7 μmol/g for Pb(II), 52.4 μmol/g for Cd(II), and 45.3 μmol/g for Hg(II). The observed affinity order in adsorption was found to be Cu(II) > Pb(II) > Cd(II) > Hg(II) for both under noncompetitive and competitive conditions. The adsorption of heavy metal ions increased with increasing pH and reached a plateau value at around pH 5.0. The optimal pH range for heavy‐metal removal was shown to be from 5.0 to 8.0. Desorption of heavy‐metal ions was achieved using 0.1 M HNO3. The maximum elution value was as high as 98%. These microbeads are suitable for repeated use for more than five adsorption‐desorption cycles without considerable loss of adsorption capacity. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 81–89, 2000  相似文献   

20.
Active carbon spheres were prepared by chemical activation using acid-pretreated resin beads, composed of sulfonated polystyrene divinylbenzene. Carbonization and activation were carried out simultaneously at various temperature ranges from 200 to 900 °C for 4 h, under gentle fluidization conditions facilitated with N2 flow. Effect of temperature on carbon burn-off of precursor and surface area of active carbon spheres was also studied. Prepared active carbon spheres were characterized using scanning electron microscope, surface area analyzer, thermo gravimetric analyzer, tensile tester, and CHNS instrument. Active carbon spheres exhibited high surface area 976 m2/g and pore volume 0.68 ml/g. They were also evaluated for total surface acidity of 1133 meq/100 g and surface basicity of 275.3 meq/100 g. Active carbon spheres showed their applicability for the removal of CN (50%) and for various heavy metal ions such as Pb(II), Mn(II), Hg(II), Cu(II), Cd(II), Zn(II), and Ni(II) (50–90%) from their contaminated solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号