首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this research, heterogeneous cation exchange membranes were prepared by the casting‐solution technique using polycarbonate (PC) and S‐polyvinylchloride (S‐PVC) as binders along with cation exchange resin as functional group agent. The effect of blend ratio (PC to S‐PVC) of polymer binder on structure and electrochemical properties of the prepared membranes were elucidated. The morphology of the prepared membranes was investigated by scanning electron microscopy (SEM) and scanning optical microscopy (SOM). The images show that the addition of PC ratio in the casting solution results in formation of a membrane with more inner cavities and micro voids. The electrochemical properties and mechanical strength tests were conducted. Water content, ion exchange capacity, ion permeability, flux, current efficiency, and oxidative stability of the prepared membranes initially were decreased by increasing the PC ratio in the casting solution and then it began to increase. The blending of S‐PVC and PC polymers results in membranes with lower mechanical strength. Membrane potential, surface charge density, perm‐selectivity, cationic transport number, electrical resistance, and energy consumption were initially improved by the increment of PC ratio in the casting solution and then it decreased. The membrane with 70% PC exhibited the highest flux, maximum current efficiency, and minimum energy consumption. However, the selectivity of this membrane was low compared with the other prepared membranes. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
《分离科学与技术》2012,47(16):2308-2321
Polycarbonate heterogeneous cation exchange membranes were prepared by solution casting techniques using tetrahydrofuran as solvent and cation exchange resin powder as functional groups agent. The effect of resin ratio loading on properties of prepared membranes was studied. Also, transport properties of the prepared membranes for mono and bivalent cations were evaluated. Scanning electron microscopy and scanning optical microscopy were used for the membranes structure investigation. Images showed that increase of resin ratio in casting solution results in a highly uniform phase to form. Formation and propagation of voids, cavities, and cracks were facilitated through higher resin ratio loading. The water content, surface hydrophilicity, specific surface area, ion exchange capacity, ion concentration, ionic permeability, conductivity, flux, and current efficiency of the membranes were enhanced and their energy consumption, oxidative stability, and mechanical strength were declined by increase of resin ratio loading. Moreover, membranes showed higher ionic flux, current efficiency, and lower energy consumption for sodium ions in comparison with bariums. Furthermore, with the increase of resin loading, permselectivity, membrane potential and transport number of membranes were improved for monovalent ions and diminished for bivalent ones. Also, membranes exhibited lower membrane potential, selectivity, and transport number for bivalent ions in comparison with the monovalent type.  相似文献   

3.
Acrylonitrile‐butadiene‐styrene (ABS)/high impact polystyrene (HIPS) blend heterogeneous anion exchange membranes were prepared by phase inversion method using tetrahydrofuran as solvent and anion exchange resin powder as functional group agent. Activated carbon was selected as inorganic filler additive. The additive concentration effect on properties of the prepared membranes was studied. Ultrasonic method was used to help appropriate dispersion of particles in the membrane's matrix. Scanning optical microscopy showed that sonication has a significant influence on distribution of resin particles in the membrane matrix and makes it possible to form more uniform phase. Moreover, images showed a relatively uniform surface for membranes. The increase of activated carbon concentration in casting solution led to a decline in membrane water content. The ion exchange capacity, membrane potential, permselectivity, transport number, ion permeability, ionic flux, and current efficiency of prepared membranes all were increased initially by the increase in additive concentration up to 1% wt and then they showed decrease trend with higher increase in additive concentration from 1 to 4% wt. Conversely, the electrical resistance and energy consumption showed opposite trends. In addition, with more additive loading, the oxidative stability of membranes was slightly decreased and their thermal stability was increased. Membrane with 1% wt additive loading exhibited higher efficiency and electrochemical properties in comparison with other prepared membranes in this research. Furthermore, prepared membranes exhibited suitable electrochemical properties compared to a commercial heterogeneous anion exchange membrane with the same experimental conditions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
The heterogeneous cation‐exchange membranes were prepared by employing two different methods: immersing the cation‐exchange resin‐loaded membranes in gelation bath; evaporating the solvent upon casting a uniform solution of cation‐exchange resin on a glass plate. The effect of resin loading on the electrochemical properties of the membranes was evaluated. The permselectivity of these heterogeneous membranes and transport number of calcium ions relative to sodium ions was evaluated with respect to the extent of resin loading and the methods of preparation. It is found that the membrane potential, transport number, permselectivity, and relative transport number are prominently high in the solvent evaporation method compared with the gelation method. The transport number of calcium ions relative to sodium ions in the solvent evaporation method increased monotonously with increasing resin loading. However, the increase of resin loading did not influence much on the relative transport numbers in the gelation method. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 198–207, 2006  相似文献   

5.
In this research polyvinylchloride/polycarbonate blend heterogeneous cation exchange membranes were prepared by solution casting technique using cation exchange resin powder as functional groups agent. Tetrahydrofuran (THF) and dimethylformamide (DMF) were utilized as solvents. The effect of solvent type and ratio (THF/DMF mixture) on properties of prepared membranes was studied. SEM and SOM images showed relatively uniform particle distribution and also uniform surface for the membranes. Images showed that at high DMF ratio decrease of polymer conformation with particles surface reduces the compatibility of polymer-particle. The membrane ion exchange capacity and permeability were enhanced initially by increase of DMF ratio up to 5% (v/v) in casting solution and then they began to decrease with more DMF ratio. Results showed that membrane potential, transport number, selectivity and thermal stability all were decreased by DMF ratio increasing. Conversely, membrane water content, specific surface area and roughness showed opposite trends. Membrane electrical resistance initially declined by increase in DMF content up to 15% (v/v) and then it began to increase. The increase of electrolyte concentration also led to decrease in membrane transport number and selectivity. Membrane with (95:5) (v/v) solvent ratio (THF:DMF) exhibited more appropriate performance compared to others.  相似文献   

6.
Polystyrene cation exchange membranes were prepared by a PVC‐based semi‐interpenetrating polymer network (IPN) method. The reaction behaviors during polymerization and sulfonation in the preparation method were investigated. The prepared membranes were characterized in terms of the physical and electrochemical properties. The membranes exhibited reasonable mechanical properties (tensile strength, 13 MPa, and elongation at break, 52%) for an ion‐exchange membrane with the ratio of polystyrene–divinylbenzene (DVB)/poly(vinyl chloride) (PVC) (RSt‐DVB/PVC) of below 0.9. Fourier transform infrared/attenuated total reflectance, differential scanning calorimetry, and scanning electron microscopy studies revealed the formation of a homogeneous membrane. The resulting membrane showed membrane electrical resistance of 2.0 Ω cm2 and ion‐exchange capacity of 3.0 meq/g dry membrane. The current–voltage (I–V) curves of the membrane show that the semi‐IPN polystyrene membranes can be properly used at a high current density, and that the distribution of cation‐exchange sites in the membrane was more homogenous than that in commercial membranes. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1488–1496, 2003  相似文献   

7.
The feasibility of using bacterial cellulose as a source for environmentally compatible ion‐exchange membranes (IEM) was studied. Bacterial cellulose was modified with cation‐exchangeable acrylic acid (AAc) by UV‐graft polymerization to prepare membranes having ion‐exchange capacity (IEC) and greater structural density. Fourier transform infrared (FTIR) spectra showed that acrylic acids were successfully bound to bacterial cellulose. Morphological changes of acrylic acid‐treated bacterial cellulose were examined through scanning electron microscopy. A dense structure of the membrane increased with increasing UV‐irradiation time. Acrylic‐modified bacterial cellulose membrane showed reasonable mechanical properties, such as tensile strength of 12 MPa and elongation of 6.0%. Also the prepared membranes were comparable to the commercial membrane CMX in terms of the electrochemical properties, ie IEC of 2.5 meq g?1‐dry mem, membrane electric resistance of 3 ohm cm2, and transport number of 0.89. Copyright © 2003 Society of Chemical Industry  相似文献   

8.
《分离科学与技术》2012,47(10):1443-1454
In this research, polyvinylchloride/ styrene-butadiene-rubber blend heterogeneous cation exchange membranes were prepared by solution casting technique using tetrahydrofuran as solvent and cation exchange resin powder as functional groups agent. Poly methyl methacrylate (PMMA) was also employed as membrane surface modifier by emulsion polymerization technique to improve the membrane selectivity and anti-fouling property. The effect of used emulsion composition on properties of home-made membranes was studied. SOM images showed uniform particles distribution and relatively uniform surfaces for the membranes. Results revealed that surface modification of membrane led to decrease in water content, ion exchange capacity, and ionic permeability in composite membranes. Membrane potential, transport number, selectivity, ionic concentration, and membrane surface electrical resistance all were increased by the PMMA coating on membrane surface. Also, the results showed that decrease of (Methyl methacrylate (MMA): Sodium dodecyl benzene solfanate (SDBS)) ratio in used emulsion during the modification process led to decrease in water content, IEC and permeability in composite membranes. Conversely, opposite trends were found for membrane potential, transport number, selectivity, and electrical resistance by (MMA: SDBS) ratio decreasing in used emulsion. Composite membranes exhibited higher potential, selectivity, transport number, and permeability for monovalent ions compared to bivalent ones. Modified membranes showed good ability in (monovalent/ bivalent) ions separation.  相似文献   

9.
We prepared polyvinylchloride based nanocomposite heterogeneous cation exchange membranes by solution casting technique using cation exchange resin powder as functional groups agent and tetrahydrofuran as solvent. Silver nanoparticles were also used as fillers in membrane fabrication. The effect of silver nanoparticles concentration in casting solution on membrane physico/chemical and antibacterial characteristics was studied. The SEM images showed compact structure for the modified membranes. X-ray diffraction results also revealed that membrane crystallinity was clearly changed by increase of nanoparticle concentration. Membrane selectivity and transport number were enhanced initially by increase in nanoparticle content up to 4%wt in prepared membrane, and then showed decreasing trend by more increase in additive concentration from 4 to 8%wt. Selectivity and transport number were enhanced another time by further increase in nanoparticle loading ratio from 8 to 16%wt. Opposite trend was found for the membranes’ average grain size by variation in additive content. Ionic flux was also clearly enhanced by using Ag nanoparticles in membrane matrix. Moreover, modified membranes showed good ability in decrease of Escherichia coli growth rate.  相似文献   

10.
New types of composite anion‐exchange membranes were prepared by blending of suspension‐produced poly(vinyl chloride) (S‐PVC) and poly(styrene‐co‐butadiene), otherwise known as styrene–butadiene rubber (SBR), as binder, along with anion‐exchange resin powder to provide functional groups and activated carbon as inorganic filler additive. Also, an ultrasonic method was used to obtain better homogeneity. In solutions with mono‐ and divalent anions, the effect of activated carbon and sonication on the morphology, electrochemical properties and selectivity of these membranes was elucidated. For all solutions, ion‐exchange capacity, membrane potential, permselectivity, transport number, ionic permeability, flux and current efficiency of the prepared membranes initially increased on increasing the activated carbon concentration to 2 wt% in the casting solution and then began to decrease. Moreover, the electrical resistance and energy consumption of the membranes initially decreased on increasing the activated carbon loading to 2 wt% and then increased. S‐PVC‐blend‐SBR membranes with additive showed a decrease in water content and a slight decrease in oxidative stability. Also, these membranes showed good monovalent ion selectivity. Structural images of the prepared membranes obtained using scanning optical microscopy showed that sonication increased polymer‐particle interactions and promoted the compatibility of particles with binder. Copyright © 2010 Society of Chemical Industry  相似文献   

11.
Ion exchange membranes (IEMs) composed of sulfonated poly (ether sulfone) (SPES) and N-phthaloyl chitosan (NPHCs) were synthesized. NPHCs was employed in membrane fabrication to improve the porosity and hydrophilicity of membranes. The effect of blend ratio of sulfonation (DS) and NPHCs content on physico-chemical characteristics of home-made membranes was investigated. The morphology of prepared membranes was investigated by Fourier transform infrared spectroscopy (FTIR), X-ray diffractometer (XRD) and scanning electron microscopy (SEM). SEM images revealed the formation of a more porous membrane structure and smoother surface. The electrochemical and physical properties of CEMs were characterized comprising water content, contact angle, ion exchange capacity (IEC) and thermal stability. Membrane water content, surface hydrophilicity and IEC were enhanced with increase of DS and NPHCs blend ratios in casting solution. Furthermore, the diffusion coefficient was also improved slightly with increase of DS and NPHCs blend ratios in prepared membranes. Membrane potential, permselectivity, transport number and areal membrane resistance all showed decreasing trends by the increase in NPHCs blend ratio in casting solution. These results indicated that the prepared membrane has good prospective and great potential for desalination in electrodialysis applications.  相似文献   

12.
Membrane solution composition is one of the important factors that determine properties of ion‐exchange membranes. In this study, PVC‐based heterogeneous cation‐exchange membranes were prepared by the solution casting method. Effects of a hydrophilic additive [poly(ethylene glycol), PEG400] and degree of polymerization of poly(vinyl chloride) (PVC) on the morphology and electrochemical properties of the cation‐exchange membranes were investigated. The results revealed that the hydrophilic additive can improve membrane properties, including water uptake (Wu), ion‐exchange capacity (IEC), conductivity, and permselectivity. The improvements might be associated with an increase in accessibility of functional sites in the membrane matrix due to a higher hydrophilicity, indicated by a reduction of water contact angle and the greater void fraction shown by scanning electron microscopy. However, the permselectivity slightly decreased when the additive concentration was increased further. Meanwhile, increasing the degree of polymerization and PVC concentration resulted in higher permselectivity and lower conductivity, which might be due to a better resin distribution and a lower void fraction. Overall, the prepared membranes had relatively good conductivities (up to ~2.5 mS/cm) and permselectivities (up to ~0.92). In general the conductivity increased with increasing Wu and IEC, while the permselectivity showed the opposite trends. This could be associated with the efficacy of Donnan exclusion indicated by the IEC/Wu ratio and the Donnan equilibrium constant of the cation (K+). © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46690.  相似文献   

13.
The polystyrene‐DVB/PVDF alloy particles were prepared by pulverizing the polymerization product of styrene/DVB/PVDF in DMF, and then sulfonated with concentrated sulfuric acid to gain the cation exchange alloy powder, which was directly thermoformed by a hot‐press machine to form the titled cation exchange alloy membranes with the structure of semi‐interpenetrating polymer network. The effects of the polystyrene‐DVB to PVDF mass ratio and the DVB content in the monomers on the physical and electrochemical properties of the prepared alloy membranes were investigated. While the Fourier transform infrared spectroscopy (FTIR) confirms the components of membranes, the scanning electron microscopy (SEM) reveals that the alloy membranes possess a uniform distribution of functional groups, and a more dense structure with the increases of DVB content and PVDF content. The optimal prepared membranes have the area electrical resistance values within 3.0–6.6 Ω·cm2, obviously superior to the commercial heterogeneous cation exchange membrane, as well as the moderate water contents of 35–40% and the desirable permselectivity with a transport number more than 0.95. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1220‐1227, 2013  相似文献   

14.
Novel heterogeneous cation‐exchange membranes using poly (ether sulfone)(PES) as binder and sulfonated poly(phenylene sulfide) (SPPS) powder as polyelectrolyte were prepared by the solution casting‐immersion method. Compared with a conventional route for heterogeneous membrane, the steps of milling resin into fine powders and the pressing at high temperature are avoided, and thus permits a simple technique for the preparation of such membrane. The effect of the particle size and loading of SPPS resin on the properties of the membranes such as ion‐exchange capacity, water content, electrical resistance, transport number, diffusion coefficient of electrolytes, etc., have been studied. It is shown that the membrane fundamental properties are largely dependent on both the resin loading and the particle size of SPPS resin. By adjusting these two important parameters, one can obtain heterogeneous membrane with both good conductivity, selectivity, and proper water content for different industrial purposes such as electrodialysis, diffusional dialysis, etc. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 167–174, 2004  相似文献   

15.
A novel polycarbonate (PC) membrane was modified with titanium dioxide via nonsolvent-induced phase separation method to improve its hydrophilicity and antifouling properties in a submerged membrane system for the removal of humic acid (HA) both with and without polyaluminum chloride (PAC) coagulant. The effect of TiO2 additive on the morphology and performance of the nanocomposite membranes was studied by atomic force microscopy, field emission scanning electron microscopy, energy dispersive X-ray, mechanical properties, water contact angle, porosity, pure water flux, rejection tests, and antifouling parameters. The obtained results revealed that a higher critical flux was achieved by the PC/TiO2 nanocomposite membrane. The flux recovery ratio of the neat PC membrane increased with the addition of TiO2 nanoparticles and without PAC coagulant. HA removal for the PC nanocomposite membrane was higher than that of the neat PC membrane with and without PAC coagulant.  相似文献   

16.
简述了合成膜的原料聚氯乙烯,二乙烯基苯,甲基丙烯酸甲酯的选择原因,合成实验方案的确定,制备了PVC-聚(甲基丙烯酸甲酯-二乙烯基苯)半均相阳离子交换树脂膜。通过实验寻找初步的实验配方,再通过正交设计探索制备交换树脂膜的最佳实验配比和实验方法,测定了离子交换膜的离子交换当量和含水量后,判断出最佳生产工艺条件。简单介绍了离子交换膜在使用过程中的影响条件,同时也介绍了离子交换树脂在食品,农业和环境科学中的应用。  相似文献   

17.
通过缩聚法制备了含氟聚苯并咪唑(FPBI),以1–甲基咪唑和聚环氧氯丙烷为原料,制备了咪唑盐修饰的聚环氧氯丙烷(Im PECH),并通过溶液浇铸法制备了FPBI/Im PECH复合膜。系统地研究了复合膜中Im PECH含量的不同对复合膜的力学性能、热稳定性、离子电导率、离子交换容量(IEC)、吸水率、溶胀度等性能的影响。研究结果表明,随着Im PECH含量的增加,复合膜的吸水率、溶胀度、IEC、离子电导率逐渐增加,依然能够保持良好的力学性能和热稳定性。FPBI/Im PECH复合膜在80℃下最高电导率达到55.74 m S/cm,并展示了优异的耐碱性,该复合阴离子交换膜有望在碱性阴离子交换膜燃料电池中得到应用。  相似文献   

18.
The bipolar membranes were prepared by charged material of polysulfone as a base. The bipolar membranes were composed of a solvent‐resistant anion exchange layer with a crosslinking matrix prepared by the reaction of chloromethylated polysulfone in DMF with diamine, an interfacial layer made from chloromethylated polysulfone solution in DMF containing cation exchange resin and amine, and a cation exchange layer made from sulfonated polysulfone dispersing cation resin powder. The prepared bipolar membrane can exhibit lower voltage drop over 100 mA/cm2. The critical requirement for producing bipolar membranes of low potential drop is the creation of a thin interfacial region with a low electrical resistance and a suitable chemical structure, which act to catalyze water splitting. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1658–1663, 2001  相似文献   

19.
基于酰基化反应制备了氯丁基化聚砜(BPS)和氯戊酰基化聚砜(VPS),再以8?羟基?1,3,6?芘三磺酸三钠(TS)为试剂经过亲核取代反应制备了侧链长度不同的芘磺酸型聚砜4PS?SA和5PS?SA,并采用注膜法制备了4PS?SA和5PS?SA系列阳离子交换膜;通过红外光谱仪(FTIR)、紫外?可见分光光度计、核磁共振仪(1H?NMR)和原子力显微镜(AFM)测试和表征了其结构和磺酸基团含量,并探究了柔性侧链对其性能的影响。研究表明,4PS?SA和5PS?SA阳离子交换膜表现出良好的尺寸稳定性和阻醇性能;随着温度的升高,膜的吸水率、吸水溶胀率和质子传导率增加;在相同离子交换容量(IEC)下,具有较长侧链的5PS?SA尺寸稳定性和质子传导率更好,其中5PS?SA?3在室温和85 ℃下的溶胀率仅为23.7 %和39.1 %,质子传导率为0.093 S/cm和0.142 S/cm,甲醇扩散系数仅为7.09×10-7 cm2/s,表现出很好的综合性能,有望用于阳离子交换膜燃料电池的实际生产应用。  相似文献   

20.
《分离科学与技术》2012,47(8):1261-1271
Membrane composed of PC as base of polymer matrix with different ratio of multiwall carbon nano tubes (MWCNTs) as nanofillers and poly ethylene glycol (PEG) as second polymer was prepared by solution casting method. Both raw-MWCNTs (R-MWCNTs) and functionalized carboxyle-MWCNTs (C-MWCNTs) were used in membrane preparation. The MWCNTs loading ratio and pressure effects on the gas transport properties of membranes were examined in relation to pure He, N2, CH4, and CO2 gases. Results showed that the use of C-MWCNT instead of R-MWCNTs in mixed matrix membranes (MMMs) fabrication with base of PC provides better performance and also it increases (CO2/CH4) and (CO2/N2) selectivities to 27.38 and 25.42 from 25.45 and 19.24, respectively (at 5 wt% of MWCNTs). PEG as the second rubbery polymer was utilized to improve the separation performance and mechanical properties. In blend MMMs, highest (CO2/CH4) selectivity at 2 bar pressure increased to 35.64 for PC/PEG/C-MWCNT blend MMMs which was 27.28 for PC/MWCNTs MMMs at 10 wt%. Increase of feed pressure led to gas permeability and gas pair selectivity improvement in approximately all of membranes. Analysis of mechanical properties showed improvement in tensile modules with the increase of MWCNTs loading ratio and use of PEG in prepared MMMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号