首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《分离科学与技术》2012,47(17):2531-2539
ZIF-8-filled polydimethylsiloxane (PDMS) membranes, PDMS/ZIF-8, were prepared by a two-step polymerization process and were used to recover n-butanol from an aqueous solution by pervaporation (PV). Compared with pure PDMS membrane, PDMS/ZIF-8 membranes demonstrated an obviously higher n-butanol permselectivity. As an increase of ZIF-8 content, n-butanol/water selectivity increased initially and then decreased, while the n-butanol and water permeability decreased monotonously. PDMS/ZIF-8 membrane containing 2 wt% ZIF-8, that is, PDMS/ZIF-8-2 showed the highest selectivity. On the other hand, selectivity and permeability for n-butanol and water of PDMS/ZIF-8-2 membrane decreased with the increase of operating temperature. The selectivity and permeability for n-butanol reached 7.1 and 3.28 × 105 barrer, respectively, at 30°C when the feed concentration of n-butanol was 0.96 wt%.  相似文献   

2.
The extraction of 1-butanol from fermentation broths by pervaporation offers potential for use in biotechnology. Various membrane materials have been screened for their suitability for this process. Polydimethylsiloxane (PDMS) membranes gave the best results in terms of flux and selectivity, with large variations depending on their nature and preparation. Selectivity was further increased by including either organophilic adorbents (cyclodextrins, zeolites), or oleyl alcohol in dense PDMS membranes. The predominance of driving force (i.e. activity gradient) on pervaporation extraction performances was shown by a comparative study on different binary aqueous solutions of alcohols. Water flux remained practically constant while the alcohol flux was linearly related to its feed concentration. The conclusions obtained with binary mixtures were consistent with those obtained with two model ternary solutions; the influence of salt on 1-butanol permeability was negligible, whereas ethanol had a strong effect.  相似文献   

3.
In order to improve the separation characteristics of membranes for pervaporation, the introduction of fluoroalkyl groups into poly(1-trimethylsilyl-1-propyne) (PTMSP) was achieved by two methods. First, 3,3,3-trifluoropropyldimethylsilylated PTMSP was prepared via metalation of PTMSP followed by treating with 3,3,3-trifluoropropyldimethylchlorosilane. About 6 mol % of 3,3,3-trifluoropropyldimethylsilyl group was introduced by the polymer reaction. Second, the copolymerizations of 1-trimethylsilyl-1-propyne (TMSP) with 1- (3,3,3-trifluoropropyldimethylsilyl)-1-propyne (FPDSP) or 1- (1H,1H,2H,2H-tridecafluorooctyldimethylsilyl)-1-propyne (FODSP) were carried out to afford TMSP/FPDSP or TMSP/FODSP random copolymers. The ratio of TMSP monomer unit and the comonomer unit, x/y, was in the range of 99/1-85/15. All the chemically modified PTMSP membranes showed ethanol permselectivity for pervaporation of aqueous ethanol solution. In particular, the introduction of less than about 5 mol % of fluoroalkylsilylated units into PTMSP effectively enhanced the selectivity. However, excess introduction of FODSP comonomer unit caused a decrease of the selectivity, with the value being smaller than that of PTMSP membrane. Furthermore, tetrahydrofuran, acetone, acetonitrile, dioxane, and isopropanol were efficiently separated from their dilute aqueous solutions using a TMSP/FPDSP copolymer membrane.  相似文献   

4.
A systematic study was performed on the combination of support properties and polydimethylsiloxane (PDMS) coating conditions for the lab‐scale preparation of a defect‐free, thin film composite membrane for organophilic pervaporation. Support layers having comparable surface porosities were prepared from three polymers with different chemical composition (PVDF, PSF, PI). Their exact role on the deposition of the PDMS coating (i.e., wetting and intrusion) and the final membrane performance (i.e., effect on mass transfer of the permeants) was studied. The crosslinking behavior of dilute PDMS solutions was studied by viscosity measurements to optimize the coating layer thickness, support intrusion and wetting. It was found essential to pre‐crosslink the PDMS solution for a certain time prior to the coating. Dip time for coating the PDMS solution on the supports was varied by using automated dip coating machine. The performance of the synthesized membranes was tested in the separation of ethanol/water mixtures by pervaporation. Both flux and selectivity of the membranes were clearly influenced by the support layer. Resistance of the support layers increased by increasing the polymer concentration in the casting solutions of the supports. Increasing the dip time of the PDMS coating solution led to increased selectivity of the composite membranes. Scanning Electron Microscopy analysis of the composite membranes showed that this leads to a minor increase in the thickness of the PDMS top layer. Top layer thickness increased linearly with the square root of the dip time (t0.5) at a constant withdrawal speed of the support. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43670.  相似文献   

5.
《分离科学与技术》2012,47(9-10):1063-1077
Abstract

The separation of ethanol/water mixtures by pervaporation with a poly (dimethyl siloxane) membrane has been studied. The membrane exhibited ethanol selectivity during all process runs. Investigations focused on the effects of temperature and permeate-side pressure on membrane transport with dilute ethanol feed solutions. An increase in temperature increased the flux exponentially but had little effect on selectivity. As the permeate-side pressure was increased, the flux decreased. Selectivity did not change appreciably over the pressure range evaluated. Studies also analyzed the effect of feed concentration on flux and selectivity. Flux increased and selectivity decreased as the ethanol feed concentration increased. The permeate concentration profile is superior to a standard vapor–liquid equilibrium curve at low ethanol feed concentrations.  相似文献   

6.
A poly(1-trimethylsilyl-1-propyne) (PTMSP) membrane was systematically modified to prevent flux decline over time by incorporating poly(dimethyl siloxane) (PDMS) in three different ways: (1) semi-interpenetrating polymer network (I series), (2) PDMS sorption (S series), and (3) PDMS sorption and crosslinking (X series). The PTMSP and PDMS phases were partially mixed in the I series, which was confirmed by the measurement of density and glass transition temperature. The flux and separation factor in pervaporation of an ethanol–water mixture decrease with time for the I series, analogous to the behavior of pure PTMSP. However, the flux and separation factor remained steady with time in the case of the S and X series. The sorption method appears to be a good means for maintaining a time-unvarying flux and separation factor at a minimum expense. © 1994 John Wiley & Sons, Inc.  相似文献   

7.
Pervaporation of aqueous mixtures of ethanol, acetone, butanol, isobutanol, and furfural through polystyrene‐b‐polydimethylsiloxane‐b‐polystyrene (SDS) triblock copolymer membranes is reported. These mixtures are important for biofuel production from lignocellulosic feedstocks. Feedstock depolymerization results in the formation of furfural which must be removed before fermentation. Ethanol, butanol, isobutanol, and acetone are important fermentation biofuels. The membrane selectivity of SDS is about unity over a wide range of concentrations of aqueous ethanol mixtures, similar to the membrane selectivity of crosslinked polydimethylsiloxane (PDMS). The permeabilities of butanol, isobutanol, and furfural are larger than those of ethanol and acetone. The volatile organic compound permeability through SDS is similar to or higher than that through PDMS across a broad range of temperatures and feed concentrations is found. More selective and permeable membranes are needed to lower the cost of biofuel purification. The SDS membranes developed are but one step toward improved membranes. © 2015 American Institute of Chemical Engineers AIChE J, 61: 2789–2794, 2015  相似文献   

8.
《分离科学与技术》2012,47(4):1043-1061
Abstract

The separation of acetone-water mixtures by pervaporation has been studied. Four membranes were evaluated: a silicone composite (SC) membrane, a polydi-methylsiloxane (PDMS) membrane, a polymethoxysiloxane (PMS), and a polyether-block-polyamide copolymer (PEBA) membrane. The silicone composite membrane exhibited a higher flux and selectivity than any of the other membranes studied. At a feed temperature of 50°C, a permeate-side pressure of 1 torr, and a feed concentration of 5.0%, the silicone composite membrane had a flux of 1.1 kg/m2·h and a selectivity of 50. The effects of temperature and permeate-side pressure on membrane transport were studied using the SC membrane. An increase in temperature increased the flux exponentially, but had little effect on selectivity. An analysis of the data shows that the trend agrees quite well with an Arrhenius-type relationship. As the permeate-side pressure increased, the flux decreased in a sigmoidal fashion over the range evaluated. Selectivity did not change significantly over the lower portion of the pressure range studied. The effect of feed concentration on flux and selectivity was also investigated.  相似文献   

9.
Poly(1‐trimethylsilyl‐1‐propyne) (PTMSP) is known to show preferential permeation of ethanol in the pervaporation of ethanol–water mixture. Although this polymer presents good characteristics for the separation of organic–water solutions, operation conditions and membrane characteristics, such as thickness, affect its pervaporation performance. The effect of temperature and feed concentration on pervaporation was studied. During pervaporation of 10 wt % ethanol–water solution, the separation factor (αH2OEtOH) remains almost constant, whereas the permeation flux (F) increases exponentially with operation temperature. On the other hand, the separation factor decreases, whereas the permeation flux increases with ethanol content in the feed mixture. The membrane thickness also affects the performance of PTMSP polymer films: selectivity increases sharply with membrane thickness up to 50 μm, whereas it remains constant for thicker membranes. The permeation flux decreases with membrane thickness in the whole range studied. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94:1395–1403, 2004  相似文献   

10.
碳纳米管填充PDMS膜的渗透汽化性能   总被引:3,自引:3,他引:0       下载免费PDF全文
将碳纳米管(CNTs)填充到PDMS中制备出CNTs/PDMS杂化膜,并将其用于乙醇/水体系的分离,发现由多壁碳纳米管制备的膜分离性能优于单壁碳纳米管填充膜,在40℃下,进料乙醇浓度为5%(质量分数)时,膜的分离因子可由8.3提高到10.0,渗透通量为206.2 g·(m2·h)-1;采用十二烷基三氯硅烷对多壁碳纳米管进行修饰,并对修饰前后碳纳米管的性能进行表征,研究表明修饰后碳纳米管表面形成疏水层,碳纳米管的疏水性增强;将修饰后的碳纳米管填充到PDMS中,可进一步提高杂化膜对乙醇的选择性,膜的分离因子可提高到11.3,渗透通量为130.9 g·(m2·h)-1。  相似文献   

11.
The separation performance of two different commercially available tubular inorganic membranes was studied for solvent dehydration. The separation layers consisted of A-type zeolite and microporous silica. The membrane characteristics were determined as function of operating conditions such as feed composition, temperature, and permeate pressure in pervaporation and vapor permeation. Among different membranes of the same batch, flux and selectivity were reproducible within 10%. The partial flux of water as the preferentially permeating component increases linearly with the water vapor pressure difference between feed and permeate and depends only marginally (viscosity influence) upon the properties of the organic component. The flux of the organic (retained) component is low and can best be described by assuming a substance and membrane specific permeance (flux over partial pressure difference) that is independent of composition. At very low water concentration in the feed one would expect a strong increase in permeability of the retained component through non-zeolite pores and larger silica pores as predicted by pure component measurements. However, this effect was not observed in mixtures within the concentration range studied here. A temperature rise improves flux rates exponentially while selectivity remains high. Thus, higher module cost in comparison to polymeric membranes can be compensated by reduced membrane area if a higher operating temperature can be chosen. Flux and selectivity decline as a function of permeate pressure with decreasing driving force. In vapor permeation with inorganic membranes superheating of the vaporous feed improves their performance while for polymeric materials a steep flux decline is observed. High flux and selectivity are obtained in the separation of water from alcohols. The normalized flux values of the A-type zeolite membrane are roughly 10 kg/m2 h bar with a mixture selectivity of 2000 for methanol, 4000 for ethanol and 8000 for n-butanol. The average permeance of the amorphous silica membrane lies above 12 kg/m2 h bar with mixture selectivity of 50 for methanol, 500 for ethanol and 2000 for n-butanol. The separation mechanism is mainly based on adsorption and diffusion enhanced by shape selectivity and size exclusion in some cases. The transport characteristics could be described with a simple transport model based on normalized permeate fluxes. With regard to the operation stability of the membranes, no deterioration of the performance was observed for the A-type zeolite in solvent dehydration or in separation of water from reaction mixtures. The silica membrane showed an initial conditioning effect involving a rearrangement of Si-OH groups with an increase in selectivity and decrease in flux of about 30%. After a few hours the performance stabilized and remained constant during further operation.  相似文献   

12.
Poly(1‐trimethylsilyl‐1‐propyne) (PTMSP) membranes have been used to separate ethanol–water mixtures by pervaporation. This polyacetylene is known to present high affinity toward ethanol, showing high selectivity and ethanol permeation flux. The performance of this polymer in the separation of alcohol–water solutions has been evaluated over long periods (572 h) at a high temperature (75°C) to examine the deterioration of the transport properties in the separation of 50 wt % ethanol–water solutions. Although PTMSP membranes present good characteristics for the separation of gases and liquid mixtures, their organic selectivity decrease with the operating time because of the relaxation processes of the polymeric chains, which affect the free volume of the polymer, the deterioration being more evident for concentrated solutions. The effects of the operation temperature on the characteristic parameters of pervaporation have also been studied to establish how this variable affects the performance of PTMSP membranes. The selectivity increases slightly with the operation temperature, but the effect of the temperature on the separation factor decreases as membranes are degraded with the operation time. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2843–2848, 2007  相似文献   

13.
The application of pervaporation (PV) to the removal of volatile organic from aqueous solutions has become very interesting in the last few years. It is caused by the increasing level of compounds, such as petrochemical solvents (benzene, toluene, and xylenes) or chlorinated solvents (trichloroethylene or tetrachloroethylene), which are polluting the natural environment. In this work, effects of polyimide (PI) (prepared by direct polycondensation of dianhydride and diamine followed by thermal cyclization of polyamic acid) filler on PV properties of poly(dimethyl siloxane) (PDMS) have been studied. PDMS membrane filled with PI was used for the separation of benzene (Bz) and toluene (Tol) from the diluted aqueous solution and the results were compared with the neat PDMS membrane of similar thickness. The PDMS‐PI membrane showed normalized flux (J′) upto 1.2 kg μm/m2h for Bz and 1.48 kg μm/m2h for Tol and selectivity of organics varies from 7.3 to 3.2 for Bz and 8.9 to 2.8 for Tol with increasing concentration of organics. Concentration of PI filler in PDMS varied 5–25% w/w. PI filler increases thermal as well as mechanical stability of filled PDMS membranes. PDMS membrane filled with 25% PI was chosen for the pervaporation studies. The membranes were characterized by FTIR, thermogravimetric analyser and scanning electron microscopy. The mechanical strength of PDMS filled with 25% w/w PI (SPI‐25) membrane was found to be 2.7 MPa. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
In this work we have compared and contrasted the pervaporation behaviour (separation factor and flux) of fluorosilicone dense membranes based on poly(trifluoropropylmethylsiloxane) (PTFPMS) with poly(dimethylsiloxane) (PDMS) dense membranes. In particular, pervaporation experiments were carried out at 298 K using lab-made PTFPMS, lab-made PDMS and commercial PDMS membranes in order to remove three different organic liquids pyridine (PY), isopropanol (IPA) and methylethylketone (MEK) from dilute (<10 wt.%) binary aqueous mixtures. All of the silicone membranes studied were found to be successful for the desired separations. The permeation flux of pyridine–water liquid mixtures for the PTFPMS membranes was found to increase with the pyridine concentration in the feed mixtures. The separation factor for PDMS membranes for the removal of pyridine, IPA and MEK from aqueous binary mixtures (1 wt.%) was found to be higher than that of PTFPMS membranes while the normalized flux was higher for PTFPMS membranes under identical test conditions. The effect of crosslink density of the PTFPMS membranes on the separation of pyridine–water mixtures was also studied. For a 1 wt.% feed solution the total flux increased with the molar mass between crosslinks, whereas the separation factor for pyridine–water was highest for a molar mass between crosslinks of 15,320 g mol−1.  相似文献   

15.
This study dealt with the separation of binary water–phenol and water–methanol mixtures and ternary water–phenol–methanol mixtures by pervaporation (PV) with polydimethylsiloxane (PDMS) membranes. The effects of the operating conditions (feed temperature, feed concentration, and feed flow rate) on the separation performance for binary mixtures were investigated. An increase in temperature or concentration increased the total permeation flux and decreased the organic separation factor. In other words, an increase in the temperature or feed organic concentration increased the water flux more significantly than the organic compound flux, which resulted in a separation factor reduction. Also, an increase in the feed flow rate increased the total flux and separation factor because the boundary layer effects diminished. The vapor–liquid equilibrium separation factor (αVLE) and pervaporation separation factor (αPV) values for the PDMS membrane were calculated, and this showed that αPV for the water–phenol mixture was greater than αVLE. This means that the membrane was highly efficient for the PV separation of phenol from dilute aqueous solutions relative to the separation of methanol. This was due to the fact that phenol has a higher solubility parameter than methanol in silicone membranes. To study the effect of a third component on membrane performance, PV experiments were also carried out with water–phenol–methanol mixtures. The results for total permeation flux and the phenol separation factor for PDMS membranes in contact with water–phenol–methanol ternary mixtures are similar to those in contact with water–phenol binary mixtures. The phenol separation factor of the membrane in contact with the ternary mixture was slightly lower than that in contact with the binary mixture. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
In order to improve the separation characteristic at pervaporation, the introduction of several kinds of trialkylsilyl groups into poly(1-trimethylsilyl-1-propyne) (PTMSP) was achieved via metalation of PTMSP followed by treating with trialkylchlorosilanes to afford trialkylsilylated PTMSP. Ratio of TMSP monomer unit and trialkylsilylated unit, x/y, was in the range of 95/5 to 80/20. All the chemically modified PTMSP membranes showed ethanol permselectivity at pervaporation of aqueous ethanol solution. Introduction of appropriate length of alkyl groups (methyl, ethyl, propyl, butyl, hexyl, octyl, and decyl groups) into PTMSP effectively enhanced the selectivity. However, excess introduction of octyl and decyl groups or introduction of dodecyl and octadecyl groups caused decrease of selectivity, of which the value was smaller than that of PTMSP membrane. Furthermore, acetone, acetonitrile, dioxane, and isopropanol were efficiently separated from their aqueous solutions at pervaporation through trimethylsilylated PTMSP membrane.  相似文献   

17.
支撑层对硅橡胶复合膜渗透汽化分离性能的影响   总被引:11,自引:1,他引:10  
引言 为了扩大渗透汽化技术的应用领域,科研工作者需要进一步增强渗透汽化膜的分离性能.从工业化的观点而言,用于实际应用的渗透汽化膜大多是复合膜,它由选择层(或分离层)和支撑层组成.一般认为,选择层决定着复合膜的选择性和通量,支撑层起支撑和机械稳定作用.Nijhuis[1]在从甲苯-水体系中分离甲苯的过程中对均质膜和以聚砜为支撑层的复合膜的分离性能进行了比较;Sturken[2]分别用聚醚酰亚胺和聚偏氟乙烯为支撑层的硅橡胶膜从二氯乙烷-水体系中提取二氯乙烷,他们得到了相同的结论:支撑层的影响可以忽略.然而Scholz[3],Heinzelmann[4],Rautenbach[5],Borges[6],Vankelecom[7],Farooq[8],Lipnizki[9]等均在各自研究中发现,由于基膜和分离层的物理化学性质以及制膜方法等众多因素的存在使得支撑层在一定程度上影响复合膜的分离性能;Feng[10]对均质硅橡胶膜和有微孔支撑层的硅橡胶复合膜的分离性能进行了比较,发现均质硅橡胶膜优先透过异丙醇,而有微孔亲水性支撑层的硅橡胶复合膜则优先透过水,这表明在一定的情况下,支撑层甚至起主导作用并能够决定复合膜的分离性能.因此,通过系统研究以不同多孔材料为支撑层的复合膜对有机物-水溶液的分离性能的影响,能够找到最优的复合膜支撑层,从而能够提高复合膜的分离性能.然而,至今关于支撑层对渗透汽化膜分离性能影响的系统研究仍相当少.  相似文献   

18.
Different polydimethylsiloxane (PDMS) nanocomposite membranes were synthesized by incorporating various contents of nanosized silica particles to improve the PDMS pervaporation (PV) performance. A uniform dispersion of silica nanoparticles in the PDMS membranes was obtained. The nanocomposite membranes were characterized morphologically by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results showed that surface roughness increases by incorporating silica, and this decreases absorption of penetrants on the membrane. Swelling studies showed that the presence of silica nanoparticles into the PDMS membranes decreases degree of swelling, which can be attributed to rigidification of the PDMS matrix. Additionally, the results revealed that helium permeability decreases through the nanocomposite membranes, due to the more polymer chains packing. Effects of silica on recovery of isopropanol (IPA) from water mixtures were also investigated. Based on the results, incorporating silica nanoparticles promotes significantly the PDMS membrane selectivity because the polymer chains are rigidified and also the polymer free volume decreases. However, permeation flux decreases as diffusion of the penetrants reduces in the presence of silica nanoparticles within the PDMS membranes. As PV performance depends on operating conditions, effects of feed composition, and temperature were also studied. Moreover, recoveries of IPA, ethanol, and methanol from water mixtures were compared using the PDMS‐silica nanocomposite membranes. The results demonstrated that polarity and solubility of alcohols affect permeation flux and selectivity resulting in the higher permeation flux and selectivity for IPA. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
《分离科学与技术》2012,47(20):2867-2873
Abstract

Zeolite-filled polydimethylsiloxane/polysulfone composite membranes were prepared and used to separate ethanol from dilute ethanol-water mixtures through a pervaporation process. During this process the relationship between flux (J) and temperature (T) is J = 597.95 exp(-E 0/RT) (g/m2·h), E 0 = 3.292 kJ/mol. The experimental results show that the flux decreases with increasing downstream pressure while the selectivity (αEtOH/water) rises, the flux increases, and the selectivity decreases with a rise of feed concentration, and the flux as well as the selectivity increase with increasing bulk velocity on the upstream side of the membrane.

  相似文献   

20.
Polymer membranes having cationic charge site, poly(1-alkyl-4-vinylpyridinium iodide-co-acrylonitrile) (alkyl: methyl, butyl, or octyl) were prepared in terms of coulombic interaction for separation of water–ethanol mixtures. The incorporation of cationic charge site into the membrane led to improve not only separation factors (selectivity toward water) but also flux number in the separation of aqueous ethanol solution by pervaporation technique. Target values, which were requested to have from the viewpoint of industrial utilization for separation of aqueous ethanol solution were attained as follows: separation factor toward water over 50 and flux value over 500 g m?2 h?1, through poly(1-methyl-4-vinylpyridinium iodide-co-acrylonitrile) (membrane 3 ) (quarternized fraction of pyridinium moiety, 89.5%; mol fraction of pyridinium moiety, 0.034) and poly(1-butyl-4-vinylpyridinium iodide-co-acrylonitrile) (membrane 5 ) (quarternized fraction, 100%; mol fraction of pyridinium moiety, 0.038). It was found that the introduction of cationic charge site into the membrane was one of feasible methods to obtain suitable membranes for water permselective membranes in the separation of water–ethanol mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号