首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper deals with the development and application of a special crack-tip finite element to obtain the bending and shear intensity factors for thin elastic plates containing cracks. The bending and shear intensity factors are then used to compute the Strain Energy Density Factor and the direction of crack initiation. The solution procedure is illustrated through several numerical examples. The problem of an axial flow compressor blade containing a crack is solved using a combination of special crack tip plate bending and plane stress elements.  相似文献   

2.
An analytical study of the higher-order asymptotic solutions of the stress and strain fields near the traction-free crack tip under antiplane shear in a linear hardening material is investigated. The results show that every term of the asymptotic fields is controlled by both elasticity and plasticity and all the higher-order asymptotic fields are governed by linear nonhomogeneous equations. The first four term solutions are presented analytically and the first four terms are described by two independent parameters J and K 2. The amplitude of the second order term solution is only dependent on the material properties, but independent of loading and geometry. This paper focuses on the case with traction-free crack surface boundary conditions. The effects of different crack surface boundary conditions, such as clamped and mixed surfaces, on the crack-tip fields are also presented. Comparison of multi-term solution with leading term solution, and finite element solution in an infinite strip with semi-infinite crack under constant displacements along the edges is provided.  相似文献   

3.
王珊 《工程力学》2018,35(5):10-16
对于含穿透裂纹的板结构,裂纹尖端应力场及应力强度因子的计算精度对评估板的安全性具有非常重要的影响。基于含裂纹Kirchhoff板弯曲问题中裂纹尖端场的辛本征解析解,该文提出了一个提高裂纹尖端应力场计算精度的有限元应力恢复方法。首先利用常规有限元程序对含裂纹板弯曲问题进行分析,得到裂纹尖端附近的单元节点位移;然后根据节点位移确定辛本征解中的待定系数,得到裂纹尖端附近应力场的显式表达式。数值结果表明,该方法给出的应力分析精度得到较大提高,并具有良好的数值稳定性。  相似文献   

4.
Analysis of Bimaterial Wedges Using a New Singular Finite Element   总被引:3,自引:0,他引:3  
This paper is concerned with the singular stress field at the vertex of a bimaterial wedge under in-plane loading. The boundary value problem is initially formulated in terms of the complex function method. The eigenequations are obtained using the continuity conditions along the interface and the traction-free conditions along the free edges, leading to the development of explicit expressions for the singular stress and displacement fields for a general bimaterial wedge. These expressions are then used to develop a new singular finite element. This element enables the determination of the singular stress field and the associated stress intensity factors reliably and efficiently. To establish the validity of the method, test cases are examined and compared with existing solutions. The method is then applied to evaluate the effect of the wedge geometry and the elastic mismatch upon the resulting stress intensity factors.  相似文献   

5.
New fundamental solutions which automatically satisfy boundary conditions at the interfaces of an elastic plate perfectly bonded to two elastic halfspaces are implemented in a 3-D boundary element method (BEM) for crack problems. The BEM features a new integration scheme for highly singular kernels. The capability is achieved through a part analytic and part numerical integration procedure, such that the analytic part of the integration is similar for all slip/opening variations, ‘Part-through’ elliptic cracks in an elastic plate with traction-free surfaces are analysed and the stress intensity factor (SIF) values along the crack front are found to compare favourably with widely accepted numerically obtained SIF results by Raju and Newman.1  相似文献   

6.
This paper deals with a procedure to calculate the elastic stress intensity factors for arbitrary-shaped cracks in plane stress and plane strain problems. An assumed displacement hybrid finite element model is employed wherein the unknowns in the final algebraic system of equations are the nodal displacements and the elastic stress intensity factors. Special elements, which contain proper singular displacement and stress fields, are used in a fixed region near the crack tip; and the interelement displacement compatibility is satisfied through the use of a Lagrangean multiplier technique. Numerical examples presented include: central as well as edge cracks in tension plates and a quarter-circular crack in a tension plate. Excellent correlations were obtained with available solutions in all the cases. A discussion on the convergence of the present solution is also included.  相似文献   

7.
An attempt has been made to study the influence of large deformation on the stress intensity factor in a cracked plate subjected to bending including shear deformation. It is assumed that singular terms for stress resultants and strains in the case of large deformation have the same angular distribution and order of singularity as in the case of a linear problem. With this in view the small deformation singular element has been used at the crack tip region surrounded by large deformation plate bending elements. The finite element analysis, based on total Lagrangian formulation combined with the modified Newton–Raphson technique, has been used to get numerical results. Several examples connected with large deformation of cracked plates subjected to bending are studied. Using the above technique stress intensity factors for linear and non-linear cases have been compared.  相似文献   

8.
A novel hybrid finite element method based on a numerical procedure is proposed to compute singular field near V-shaped notch corners in an anisotropic material containing polygonal holes. The finite element method is established by the following three steps: (1) an ad hoc one-dimensional finite element formulation is employed to determined numerical eigensolutions of the singular field near an V-shaped notch corner; (2) a super corner tip element is constructed to determine the strength of the singular field, in which the independent assumed stress fields are extracted from the eigensolutions; (3) a novel hybrid finite element equation is obtained by coupling the super corner tip element with the conventional hybrid stress elements. In numerical examples, generalized stress intensity factors for interactions between two polygonal holes with various geometry, space position and material property are mainly discussed. All the numerical results show that present method yields satisfactory singular stress field solutions with fewer elements. Compared with the conventional finite element methods and integral equation methods, the present method is more suitable for dealing with micromechanics of anisotropic materials.  相似文献   

9.
A finite element model for the analysis of laminated composite cylindrical shells with through cracks is presented. The analysis takes into account anisotropic elastic behaviour, bending-extensional coupling and transverse shear deformation effects. The proposed finite element model is based on the approach of dividing a cracked configuration into triangular shaped singular elements around the crack tip with adjoining quadrilateral shaped regular elements. The parabolic isoparametric cylindrical shell elements (both singular and regular) used in this model employ independent displacement and rotation interpolation in the shell middle surface. The numerical comparisons show the evidence to the conclusion that the proposed model will yield accurate stress intensity factors from a relatively coarse mesh. Through the analysis of a pressurised fibre composite cylindrical shell with an axial crack, the effect of material orthotropy on the crack tip stress intensity factors is shown to be quite significant.  相似文献   

10.
11.
The stress field near the tip of a crack in a plate subjected to membrane and bending loads and undergoing large deflections, is investigated by performing an asymptotic analysis in the context of von Karman plate theory. It is demonstrated that the character of the near tip fields is identical to those of the linear plate theory. However, the determination of the crack tip stress intensity factors requires the solution of a large deflection, and hence nonlinear, problem due to the coupling of the membrane and bending modes. This effect is illustrated through the solution of three fracture problems involving plates of simple geometries loaded by pressure, tension and shearing. In two of these problems, the energy release rate is obtained exactly. Nonlinear finite element computations are performed to obtain the stress intensity factors and energy release rate associated with tension, bending and shearing. These results are compared to the theoretical results for energy release rate and stress intensity factors. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Based on the classical plate theory, the analytical solution for an infinte thin plate containing a crack subjected to arbitrary symmetric bending moments on the crack surfaces is first derived. Using this solution, an efficient and accurate finite element alternating procedure is then devised to deal with symmetric plate bending problems with single or multiple cracks. The interaction effect among cracks and the influence of the geometric boundaries on the calculation of bending stress intensity factors are also presented in detail. Several numerical examples are solved to demonstrate the validity of the approach.  相似文献   

13.
This note concerns with stress intensity factors of cracks emanating from a square hole in rectangular plate under biaxial loads by means of the boundary element method which consists of the non-singular displacement discontinuity element presented by Crouch and Starfied and the crack tip displacement discontinuity elements proposed by the author. In the boundary element implementation the left or the right crack tip displacement discontinuity element is placed locally at corresponding left or right crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundary. The present numerical results illustrate that the present approach is very effective and accurate for calculating stress intensity factors of complicated cracks in a finite plate and can reveal the effect of the biaxial load and the cracked body geometry on stress intensity factors.  相似文献   

14.
A versatile hybrid finite element scheme consisting of special crack-tip elements and crack face contact elements is developed to analyse a partially closed interface crack between two dissimilar anisotropic elastic materials. The crack-tip element incorporates higher-order asymptotic solutions for an interfacial crack tip. These solutions are obtained from complex variable methods in Stroh formalism. For a closed interfacial crack tip, a generalized contact model in which the crack-tip oscillation is eliminated is adopted in the calculation. The hybrid finite element modelling allows the stress singularity at an open and closed crack tip to be accurately treated. The accuracy and convergence of the developed scheme are tested with respect to the known interface crack solutions. Utilizing this numerical scheme, the stress intensity factors and contact zone are calculated for a finite interface crack between a laminated composite material.  相似文献   

15.
This paper attempts to answer two commonly raised questions during the preparation of a finite element mesh, for the linear elastic fracture analysis of cracked structure: how to set up the finite element mesh around the crack tip, and what level of accuracy is to be expected from such a modelling. Two test problems, with known analytical expressions for their stress intensity factors, are analysed by the finite element method using the isoparametric quadratic singular element. The modified parameters were the order of integration, aspect ratio, number of elements surrounding the crack tip, use of transition elements, the singular element length over the total crack length, the symmetry of the mesh around the crack tip. Based on these analyses, a data base is created and various plots produced. The results are interpreted, the accuracy evaluated and recommendations drawn. Contrary to previous reports, it is found that the computed stress intensity factor (SIF) remains within engineering accuracy (10 per cent) throughout a large range of l/a (singular element length over crack length) for problems with a uniform non-singular stress distribution ahead of the crack tip (i.e. double edge notch), and l/a should be less than 0·1 for problems with a non-singular stress gradient (i.e three-point bend). Also, it is found that the best results are achieved by using at least four singular elements around the crack tip, with their internal angles around 45 degrees, and a reduced (2 × 2) numerical integration.  相似文献   

16.
Abstract

The capabilities and limitations of refined two-dimensional (2D) composite plate elements are discussed with respect to the stress concentration problem occurring at traction-free edges. Classical displacement-based and advanced partially mixed finite elements are formulated according to Carrera’s Unified Formulation (CUF). Rectangular laminates are analyzed under extension and bending loading, where the attention is focused on the local stress response at the free edges. Present results are compared with reference results available in the literature and a 3D finite element model. A power law representation for a singular stress field is used to fit the obtained stresses in the vicinity of the free edge, and the parameters are used to assess the CUF elements and to compare the free-edge effect occurring in extension and bending.  相似文献   

17.
An elastic-plastic analysis is performed for two problems relevant to fracture mechanics: a semiinfinite body with an edge crack in a far out-of-plane shearing field and an infinite plate under plane stress conditions containing a finite line crack in a remote tensile field. Amplitudes of the dominant singularity in the plastic region at the crack tip, the plastic stress and strain intensity factors, are calculated for applied stress levels approaching the yield stress. A technique is developed for using the dominant singular solution in conjunction with the finite element method to make accurate calculations for the near-tip fields. Additionally, a comparative study of deformation theory with flow theory is performed for cracks in an anti-plane shear field. Elastic fracture mechanics is extended to high levels of applied stress for which the plastic zone is no longer small compared to the crack length by relating the critical stress for fracture initiation to the plastic intensity factors.  相似文献   

18.
Thermal loading of fractured structures is associated with the development of differential deformations along crack surfaces which result in the closure of the crack. Inherent non-linearities demand application of numerical procedures to resolve this problem. In this paper, a boundary element procedure is formulated to treat crack surface interference imposed under thermal steady-state or transient loadings. An iterative-incremental procedure is developed to deal with the non-linearity produced by the frictional contact of the crack surfaces. The open, adhesion and slip contact conditions are modeled through the utilization of the multi-domain technique. Two approaches are followed regarding the thermal boundary contact conditions along the crack region. In the first, crack surfaces are assumed to be thermally insulated. This assumption simplifies the formulation significantly. In the second, the crack surfaces are assumed to provide perfect thermal contact. Thermal stress intensity factors are evaluated from traction nodal results that adopt singular elements in the crack tip region. Numerical examples are illustrated, discussed and compared with analytical solutions, where possible. Fracture characteristics are predicted in terms of the involved parameters. As a general conclusion, peak values of thermal stress intensity factors depend on the friction conditions existing between crack faces.*Author for correspondence. (E-mail: nanif@mech.upatras.gr, Phone: +30-2610-997-197, Fax: +30-2610-997-207)  相似文献   

19.
The direct boundary integral equations method has been applied to analyze stresses in a fracture process zone (a crack bridged zone) and to calculate stress intensity factors module for structures with bridged interfacial cracks under mechanical loading. Bridged zones at interfacial cracks are considered as parts of these cracks with assumption that surfaces of interfacial cracks are connected by distributed spring-like bonds with given bond deformation law. For numerical analysis of piecewise structures with bridged interfacial cracks the multi-domain formulation of the boundary elements method is used. The stress intensity factors module evaluation is performed on the basis of displacements and stresses computed at nodal points of special quadratic boundary elements adjoined to a crack tip. The comparative study between the results obtained by the boundary elements method and the results obtained previously by the singular integral–differential equations method is performed and the validity of the presented numerical formulation is demonstrated. The new problem for a bridged circumferential crack between a cylindrical inclusion and a matrix in plate of finite size is also solved. Stresses distributions along the bridged zone and the stress intensity factors modulus dependencies versus the bridged zone length and bonds stiffness are presented and discussed for this problem.  相似文献   

20.
This paper presents a simple and physically acceptable analysis of stress intensity factor (SIF) for the center-cracked infinite and finite-width plates. The analysis includes the effect of crack surface interference (i.e., the upper and lower crack surfaces are not allowed to overlap) that influences both the SIF at the tension-side crack tip and the crack opening displacement (COD) profile. For an infinite plate, exact solutions are obtained by superimposing the classical (overlapping) solutions. For a finite-width plate, where the SIF solutions cannot be found in closed form, the solutions are carried out numerically. The overlapping SIF solutions from the weight function method are used. An example is given for the case of a finite-width plate under bending. It was found that the overlapping solutions underestimate the stress intensity factor at the tension-side crack tip up to 15%. The analysis results are also compared with the finite element solutions for verification purpose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号