首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An explicit finite element solution procedure for the three dimensional Euler equations is presented. The solution domain is automatically meshed using a tetrahedral mesh generator which is an extension of our previous two dimensional work. Several examples are included to illustrate the performance of the generator and solver. An adaptive mesh regeneration procedure is used for the first time in three dimensions.  相似文献   

2.
A spatial mesh adaptation procedure in semidiscrete finite element analysis of 2D linear elastodynamic problems is presented. The procedure updates, through an automatic remeshing scheme, the spatial mesh when found necessary in order to gain control of the spatial discretization error from time to time. An a posteriori error estimate developed by Zienkiewicz and Zhu (1987) for elliptic problems is extended to dynamic analysis to estimate the spatial discretization error at a certain time, which is found to be reasonable by analyzing an a priori error estimate. Numerical examples are used to demonstrate the performance of the procedure. It is indicated that the extended error estimation and the procedure are capable of monitoring the moving of steep stress regions by updating the spatial mesh according to a prescribed error tolerance, thus providing a reliable finite element solution in an efficient manner.  相似文献   

3.
A numerical procedure which integrates optimization, finite element analysis and automatic finite element mesh generation is developed for solving a two-dimensional inverse/parameter estimation problem in solid mechanics. The problem consists of determining the location and size of a circular inclusion in a finite matrix and the elastic material properties of the inclusion and the matrix. Traction and displacement boundary conditions sufficient for solving a direct problem are applied to the boundary of the domain. In addition, displacements are measured at discrete points on the part of the boundary where the tractions are prescribed. The inverse problem is solved using a modified Levenberg-Marquardt method to match the measured displacements to a finite element model solution which depends on the unknown parameters. Numerical experiments are presented to show how different factors in the problem and the solution procedure influence the accuracy of the estimated parameters.  相似文献   

4.
Global and element residuals are introduced to determine a posteriori, computable, error bounds for finite element computations on a given mesh. The element residuals provide a criterion for determining where a finite element mesh requires refinement. This indicator is implemented in an algorithm in a finite element research program. There it is utilized to automatically refine the mesh for sample two-point problems exhibiting boundary layer and interior layer solutions. Results for both linear and nonlinear problems are presented. An important aspect of this investigation concerns the use of adaptive refinement in conjunction with iterative methods for system solution. As the mesh is being enriched through the refinement process, the solution on a given mesh provides an accurate starting iterate for the next mesh, and so on. A wide range of iterative methods are examined in a feasibility study and strategies for interweaving refinement and iteration are compared.  相似文献   

5.
Most of the recently proposed computational methods for solving partial differential equations on multiprocessor architectures stem from the 'divide and conquer' paradigm and involve some form of domain decomposition. For those methods which also require grids of points or patches of elements, it is often necessary to explicitly partition the underlying mesh, especially when working with local memory parallel processors. In this paper, a family of cost-effective algorithms for the automatic partitioning of arbitrary two- and three-dimensional finite element and finite difference meshes is presented and discussed in view of a domain decomposed solution procedure and parallel processing. The influence of the algorithmic aspects of a solution method (implicit/explicit computations), and the architectural specifics of a multiprocessor (SIMD/MIMD, startup/transmission time), on the design of a mesh partitioning algorithm are discussed. The impact of the partitioning strategy on load balancing, operation count, operator conditioning, rate of convergence and processor mapping is also addressed. Finally, the proposed mesh decomposition algorithms are demonstrated with realistic examples of finite element, finite volume, and finite difference meshes associated with the parallel solution of solid and fluid mechanics problems on the iPSC/2 and iPSC/860 multiprocessors.  相似文献   

6.
We propose a robust immersed finite element method in which an integral equation formulation is used to enforce essential boundary conditions. The solution of a boundary value problem is expressed as the superposition of a finite element solution and an integral equation solution. For computing the finite element solution, the physical domain is embedded into a slightly larger Cartesian (box‐shaped) domain and is discretized using a block‐structured mesh. The defect in the essential boundary conditions, which occurs along the physical domain boundaries, is subsequently corrected with an integral equation method. In order to facilitate the mapping between the finite element and integral equation solutions, the physical domain boundary is represented with a signed distance function on the block‐structured mesh. As a result, only a boundary mesh of the physical domain is necessary and no domain mesh needs to be generated, except for the non‐boundary‐conforming block‐structured mesh. The overall approach is first presented for the Poisson equation and then generalized to incompressible viscous flow equations. As an example of fluid–structure coupling, the settling of a heavy rigid particle in a closed tank is considered. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents advancements toward a monolithic solution procedure and anisotropic mesh adaptation for the numerical solution of fluid–structure interaction with complex geometry. First, a new stabilized three‐field stress, velocity, and pressure finite element formulation is presented for modeling the interaction between the fluid (laminar or turbulent) and the rigid body. The presence of the structure will be taken into account by means of an extra stress in the Navier–Stokes equations. The system is solved using a finite element variational multiscale method. We combine this method with anisotropic mesh adaptation to ensure an accurate capturing of the discontinuities at the fluid–solid interface. We assess the behavior and accuracy of the proposed formulation in the simulation of 2D and 3D time‐dependent numerical examples such as the flow past a circular cylinder and turbulent flows behind an immersed helicopter in a forward flight. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
A new approach to the generation of near-optimum finite element meshes is presented. Like other current methods, the procedure presented uses the results of a previous analysis to improve the idealization, but unlike other procedures a new element mesh is generated in each cycle with the aid of interactive computer graphics. The procedure generates near-optimum two-dimensional meshes on one cycle employing a grid optimization criterion based on variations in the strain energy density and using a software system which operates like an interactive finite element preprocessor. The example problems presented demonstrate the efficiency and flexibility of the approach.  相似文献   

9.
In this paper we examine briefly the reliability of solution needed for the accurate and effective analysis of engineering design problems involving contact conditions. A general finite element formulation for treating the frictional contact problem using constraint functions is first summarized. Then we address general reliability issues and those related to the selection of appropriate elements that provide optimal performance. These elements of course do not lock and would provide the best solution an analyst can expect when simulating a design problem. Reliability issues specific to the contact formulation are also presented. A promising procedure to increase the reliability of an analysis is the method of finite spheres. The method does not require a mesh and in particular can be used with a finite element discretization as described in the paper. Finally, the results of several illustrative analysis problems are given.  相似文献   

10.
A simple, yet effective, finite element approach to aerodynamic problems is presented. A better approximation of the geometry is obtained by the mapping of airfoils into near-circles. The mapping serves in homogenizing the gradients of the problem by magnifying regions of high gradients such as the leading and trailing edges while geometrically condensing the lower gradient regions on the main part of the airfoil. The mapping also permits the use of an effective automated mesh generation scheme that greatly reduces the amount of preparatory work involved in finite elements. To limit the size of the solution domain, an asymptotic analytical solution, with unknown coefficients, is assumed on a finite radius outer contour. The coefficients are obtained along with the finite element nodal unknowns. An accrued advantage of this patching asymptotic procedure is its ability to obtain the lift as a solution variable without having to resort to the numerical integration of the pressure field over the body. Solutions to non-lifting and lifting bodies are obtained.  相似文献   

11.
In this work we discuss the finite element model using the embedded discontinuity of the strain and displacement field, for dealing with a problem of localized failure in heterogeneous materials by using a structured finite element mesh. On the chosen 1D model problem we develop all the pertinent details of such a finite element approximation. We demonstrate the presented model capabilities for representing not only failure states typical of a slender structure, with crack-induced failure in an elastic structure, but also the failure state of a massive structure, with combined diffuse (process zone) and localized cracking. A robust operator split solution procedure is developed for the present model taking into account the subtle difference between the types of discontinuities, where the strain discontinuity iteration is handled within global loop for computing the nodal displacement, while the displacement discontinuity iteration is carried out within a local, element-wise computation, carried out in parallel with the Gauss-point computations of the plastic strains and hardening variables. The robust performance of the proposed solution procedure is illustrated by a couple of numerical examples. Concluding remarks are stated regarding the class of problems where embedded discontinuity finite element method (ED-FEM) can be used as a favorite choice with respect to extended FEM (X-FEM).  相似文献   

12.
In the paper we present a postprocessed type of a posteriori error estimate and a h-version adaptive procedure for the semidiscrete finite element method in dynamic analysis. In space the super-convergent patch recovery technique is used for determining higher-order accurate stresses and, thus, a spatial error estimate. In time a postprocessing technique is developed for obtaining a local error estimate for one step time integration schemes (the HHT-α method). Coupling the error estimate with a mesh generator, a h-version adaptive finite element procedure is presented for two-dimensional dynamic analysis. It updates the spatial mesh and time step automatically so that the discretization errors are controlled within specified tolerances. Numerical studies on different problems are presented for demonstrating the performances of the proposed adaptive procedure.  相似文献   

13.
This study enhances the classical energy norm based adaptive procedure by introducing new refinement criteria, based on the projection-based interpolation technique and the steepest descent method, to drive mesh refinement for the scaled boundary finite element method. The technique is applied to p-adaptivity in this paper, but extension to h- and hp-adaptivity is straightforward. The reference solution, which is the solution of the fine mesh formed by uniformly refining the current mesh, is used to represent the unknown exact solution. In the new adaptive approach, a projection-based interpolation technique is developed for the 2D scaled boundary finite element method. New refinement criteria are proposed. The optimum mesh is assumed to be obtained by maximizing the decrease rate of the projection-based interpolation error appearing in the current solution. This refinement strategy can be interpreted as applying the minimisation steepest descent method. Numerical studies show the new approach out-performs the conventional approach.  相似文献   

14.
A new finite element formulation aimed at the solution of problems involving strain localization is presented. The proposed formulation incorporates displacement interpolated embedded localization lines. Results are shown to converge to an ‘exact solution’ when the mesh is refined and also to be quite insensitive to mesh distortions.  相似文献   

15.
The aim of this contribution is the presentation of an adaptive finite element procedure for the solution of geometrically and physically non-linear problems in structural mechanics. Within this context, the attention is mainly directed on the error estimation and hierarchical strategies for mesh refinement and coarsening in the case of finite elasto-plastic deformations. An important but sensitive aspect of adaptation approaches of the space discretization is the calculation of mechanical field variables for the modified mesh. Procedures of mesh refinement and coarsening imply the determination of strains, stresses and internal variables at the nodes and the Gauss points of new elements based on the transfer of the required data from the former mesh. In order to improve the efficiency as well as the convergence behaviour of the adaptive FE process an approach of data transfer primarily related to nodal values is presented. It is characterized by solving the initial value problem not only at the Gauss points but additionally at the nodes of the elements.  相似文献   

16.
In this paper, an automated adaptive remeshing procedure is presented for simulation of arbitrary shape crack growth in a 2D finite element mesh. The Zienkiewicz-Zhu error estimator is employed in conjunction with a modified SPR technique based on the recovery of gradients using analytical crack-tip fields in order to obtain more accurate estimation of errors. The optimization of crack-tip singular finite element size is achieved through the adaptive mesh strategy. Finally, several numerical examples are illustrated to demonstrate the effectiveness, robustness and accuracy of computational algorithm in calculation of fracture parameters and prediction of crack path pattern.  相似文献   

17.
This paper describes a p‐hierarchical adaptive procedure based on minimizing the classical energy norm for the scaled boundary finite element method. The reference solution, which is the solution of the fine mesh formed by uniformly refining the current mesh element‐wise one order higher, is used to represent the unknown exact solution. The optimum mesh is assumed to be obtained when each element contributes equally to the global error. The refinement criteria and the energy norm‐based error estimator are described and formulated for the scaled boundary finite element method. The effectivity index is derived and used to examine quality of the proposed error estimator. An algorithm for implementing the proposed p‐hierarchical adaptive procedure is developed. Numerical studies are performed on various bounded domain and unbounded domain problems. The results reflect a number of key points. Higher‐order elements are shown to be highly efficient. The effectivity index indicates that the proposed error estimator based on the classical energy norm works effectively and that the reference solution employed is a high‐quality approximation of the exact solution. The proposed p‐hierarchical adaptive strategy works efficiently. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
王永亮 《工程力学》2020,37(12):1-8
该文提出变截面变曲率梁振型的有限元后处理超收敛拼片恢复方法,建立各阶振型的超收敛解,并基于振型超收敛解进行变截面曲梁面内和面外自由振动的自适应分析。在位移型有限元后处理阶段,引入超收敛拼片恢复方法和高阶形函数插值技术,得到振型(位移)的超收敛解。利用振型超收敛解估计当前网格下振型有限元解的能量模形式下的误差,并指导网格进行自适应细分加密分析,获得优化的网格和满足预设误差限的高精度解答。数值算例表明该算法适于求解不同曲线形态、多类边界条件、变截面、变曲率形式的曲梁面内和面外自由振动连续阶频率和振型,解答精确、分析过程高效可靠。  相似文献   

19.
This paper is aimed at presenting a simple yet effective procedure to implement a mesh‐independent p‐orthotropic enrichment in the generalized finite element method. The procedure is based on the observation that shape functions used in the GFEM can be constructed from polynomials defined in any co‐ordinate system regardless of the underlying mesh or type of element used. Numerical examples where the solution possesses boundary or internal layers are solved on coarse tetrahedral meshes with isotropic and the proposed p‐orthotropic enrichment. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
Boundary element methods offer some advantages for the simulation of tunnel excavation since the radiation condition is implicitly fulfilled and only the excavation and ground surfaces have to be discretized. Hence, large meshes and mesh truncation, as required in the finite element method, are avoided. Recently, capabilities for efficiently dealing with inelastic behavior and ground support have been developed, paving the way for the use of the method to simulate tunneling. However, for large scale three dimensional problems one drawback of the boundary element method becomes prominent: the computational effort increases quadratically with the problem size. To reduce the computational effort several fast methods have been proposed. Here a fast boundary element solution procedure for small strain elasto-plasticity based on a collocation scheme and hierarchical matrices is presented. The method allows the solution of problems with the computational effort and sparse storage increasing almost linearly with respect to the problem size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号