共查询到20条相似文献,搜索用时 93 毫秒
1.
通过对主成分分析法(PCA)的数学公式进行改进,使其具有灰度归一化操作能力,从而克服光照对目标的影响,再将改进后的主成分分析法和Fisher线性判别分析方法组合起来用于人脸识别,在ORL人脸数据库上进行了实验,取得了满意的识别效果. 相似文献
2.
提出了一种基于模糊隶属度函数的独立成分分析图像特征提取和识别方法.该方法首先通过主成分分析等对图像进行预处理,然后通过FastICA算法对图像进行处理,构造特征脸子空间,计算训练样本和待测样本在特征脸子空间中的投影,引入模糊隶属度函数,建立矢量隶属度函数,作为识别分类器进行人脸识别.针对ORL标准人脸数据库上的实验结果表明,该方法具有良好的识别分类能力. 相似文献
3.
基于改进的PCA算法和Fisher线性判别的人脸识别技术 总被引:10,自引:0,他引:10
通过对主成分分析法(PCA)的数学公式进行改进,使其具有灰度归一化操作能力,从而克服光照对目标的影响,再将改进后的主成分分析法和F isher线性判别分析方法组合起来用于人脸识别,在ORL人脸数据库上进行了实验,取得了满意的识别效果. 相似文献
4.
提出一种新的图像分割方法应用于PCA中,将包含人脸特征最为明显的额头、左眼、右眼、鼻子、嘴巴等五部分从图像中分割出来,而舍弃双耳以及脸部其余部分等只包含很少特征的部位。在分类识别中引入模糊隶属方法,提出一个新的隶属度函数并加权融合上述五部分的识别结果。基于ORL人脸库的实验表明,所提出的新分割和隶属度函数结合的方法具有很好的分类效果,提高了识别率和执行效率。 相似文献
5.
6.
在特征脸法的基础上,提出将Fisher线性判别分类法应用于特征提取的方法,即利用"傅立叶-西萌"变换(Foley-Sammon变换),构造Fisher最佳鉴别向量集来得到一个使类内距离和类间距离兼顾的投影空间,从而改善特征脸法的分类效果。实验证明,该方法是切实高效的。 相似文献
7.
8.
为了提高图像语义特征提取的精确度,克服目前大部分图像语义特征提取算法中,因图像特征提取不当,导致特征参数不能全面反映图像语义的问题,提出了一种基于典型相关分析(CCA)的特征融合的图像语义特征提取方法。该方法首先采用圆形对称邻域取代传统的矩形邻域的方法,对局部二值模式(LBP)纹理特征进行了改进,然后采用高维小样本下典型相关分析对可伸缩颜色描述算子的颜色特征和改进的LBP纹理特征进行特征融合。实验结果表明,所提出的方法明显提高了图像语义特征提取的精确度,能有效地建立图像的低层特征与语义特征间的一致性。 相似文献
9.
采用近红外光谱分析法对不同种类的苹果样品进行分类,提出一种基于非相关判别转换的苹果近红外光谱定性分析新方法。实验分别采用主成分分析、Fisher判别分析和非相关判别转换三种方法对苹果光谱数据进行特征提取,并使用K-近邻分类算法建立三种苹果分类识别模型,最后使用"留一"交叉验证法进行模型检验。结果表明,使用非相关判别转换方法建立的模型正确识别率优于使用主成分分析和Fisher判别分析建立的模型。 相似文献
10.
边界Fisher分析(MFA)应用于人脸识别时会遇到小样本问题,如果用主成分分析进行降维来处理该问题,则会丢失一些对分类有益的分量;如果把MFA的目标函数用最大间距准则代替,则较难得到最佳参数。提出了一种正则化的MFA方法,该方法用一个较小的数乘上单位阵构造正则项,然后加到MFA的类内散度矩阵中,使得所得矩阵是可逆的,并且不会丢失对分类有益的分量,也容易确定其中的参数。因为一个样本通常能被少数几个距离比较近的同类样本很好地线性表达,在正则化MFA降维之后结合使用稀疏表示分类算法进一步提高识别率。在FERET和AR数据库上的实验表明,对比一些经典的降维方法,使用该方法能显著提高识别率。 相似文献
11.
12.
增强的典型相关分析及其在人脸识别特征融合中的应用 总被引:2,自引:0,他引:2
在传统的典型相关分析(CCA)基础上,定义了类别相关性,提出了增强典型相关分析(ECCA)方法.对于一个模式空间的2个观测空间(对任意模式都有2种观测向量),ECCA能够找到这2个观测空间对类别而言更有意义的相关子空间,且同时保持了投影分量的无关性.实验结果表明,ECCA优于CCA,GCCA融合方法. 相似文献
13.
特征采样和特征融合的子图像人脸识别方法 总被引:3,自引:0,他引:3
提出一种基于特征采样和特征融合的子图像人脸识别方法(RS-SpCCA).首先,对子图像进行特征采样;然后,将全局特征和采样后的特征使用CCA进行信息融合,以获取包含全局特征和局部特征的相关特征;最后,在相关特征上构建分量分类器.在该方法中,特征采样是为了构建更多且多样的分量分类器;而引入特征融合思想是为了充分利用图像的全局特征.AR,Yale和ORL这3个数据库上的实验结果表明,基于特征采样和特征融合的子图像方法(RS-SpCCA)优于单纯的信息融合方法(SpCCA)和特征采样方法(Semi-RS). 相似文献
14.
基于典型相关分析的组合特征抽取及脸像鉴别 总被引:14,自引:0,他引:14
利用典型相关分析的思想,提出了一种基于特征级融合的组合特征抽取新方法.首先,抽取同 一模式的两组特征矢量,给出描述两组特征矢量之间相关性的判据准则函数;然后依此准则 抽取它们的典型相关特征,构成有效鉴别特征矢量用于识别.该方法巧妙地将两组特征矢量之 间的相关性特征作为有效判别信息,既达到了信息融合之目的,又消除了特征之间的信息冗余 ,为两组特征融合用于分类识别提供了新的思路.此外,从理论上进一步剖析了所提出的方法 之所以能有效地用于识别的内在本质.在Yale和ORL标准人脸数据库上的实验结果证实了所提 算法的有效性和稳定性,而且识别率大大高于用单一特征进行识别的结果. 相似文献
15.
研究人脸识别精度问题。由于人脸图像中存在大量干扰信息的缺点,而造成了人脸识别正确率下降,为了解决上述问题,提出了一种基于特征互补图像快速特征融合算法。算法通过对人脸图像的位平面切片图像分析,采用位平面图像分解法,通过各种合成策略构造多幅样本图像。并突出高位平面图像,采用两种加权策略将每一幅人脸图像样本都生成"特征互补图像"。然后,直接用图像的二维典型相关分析(2DCCA)法对两种特征互补图像进行特征抽取。最后通过在ORL国际标准人脸库上进行的实验,结果表明,高位平面图像的典型相关鉴别特征提高了正确识别率,并且因为摒弃了原始人脸图像的大部分干扰信息所以具有更强的鲁棒性。 相似文献
16.
为了准确快速地进行人脸识别,提出了一种基于类矩阵和特征融合的加权自适应人脸识别算法,该算法首先,提取人脸的全局特征和6个关键部分的局部特征,同时给出了局部特征权值的动态选择方法,由于该法可以根据不同的训练集得出不同的权值,因而增强了算法的自适应能力;然后通过将全局和局部特征加权融合来得出样本的特征矩阵;接着设计出了一种加权PCA方法用于对样本矩阵进行降维;再进一步提出类矩阵的概念,同时给出并证明了类矩阵的推导公式,并据此得出一种新的投影准则;最后,将类矩阵和试验样本分别进行投影,并根据其欧氏距离的大小得出试验人脸的最终类别。试验表明,该算法不仅计算速度快、识别率高,而且能有效解决LDA小样本空间问题,应用前景良好。 相似文献
17.
一种基于Fisher鉴别极小准则的特征提取方法 总被引:3,自引:0,他引:3
特征提取是模式识别研究领域的一个热点.为了更好地解决人脸识别中的特征提取问题,定义了一种新的基于Fisher鉴别极小准则的特征提取方法,并且提出了类间散布矩阵零空间的概念,解决了先前Fisher线性变换方法中的最终特征维数受类别数的限制.在人脸数据库上的实验结果验证了该算法的有效性. 相似文献
18.
基于CCA的人耳和侧面人脸特征融合的身份识别* 总被引:2,自引:0,他引:2
鉴于人耳和人脸特殊的生理位置关系,从非打扰识别的角度出发,提出仅采集侧面人脸图像,利用典型相关分析的思想提取人耳和侧面人脸的关联特征,进行人耳和侧面人脸在特征层的融合.实验结果表明,此方法与单一的人耳或侧面人脸特征识别比较,识别率得到提高. 相似文献
19.
一种组合特征抽取的新方法 总被引:10,自引:0,他引:10
该文提出了一种基于特征级融合的特征抽取新方法,首先,给出了一种合理的特征融合策略,即利用复向量给出组合特征的表示,将特征空间从实向量空间拓广到复向量空间,然后,发展了具有统计不相关性的鉴别分析的理论,并将其用于复向量空间内最优鉴别特征的抽取,最后,在Concordia大学的CENPARMI手写体阿拉伯数字数据库以及南京理工大学NUST603HW手写汉字库上的试验结果表明,所提出的组合特征抽取方法不仅具有很强的维数压缩能力,而且较大幅度地提高了识别率。 相似文献
20.
基于特征加权的人脸识别 总被引:1,自引:0,他引:1
现有的人脸识别方法通常未考虑不同特征或像素对识别结果的影响。实际上,人脸面部不同特征在人脸识别过程中的作用是不同的。研究了各个特征在识别中的作用,分别采用三种加权方法对人脸图像进行了预处理,并应用流行的人脸识别方法(联想记忆、主分量分析和Fisher线性判别分析)进行识别。最后用标准人脸库ORL进行了实验,实验结果表明特征加权方法对人脸识别是有效且通用的。 相似文献