共查询到19条相似文献,搜索用时 71 毫秒
1.
分析了现有关联规则挖掘所潜在的问题,给出了约束关联查询的定义和基于神经网络规范约束集的构建;在此基础上,提出了基于神经网络规范约束的关联规则挖掘解决方案(CARMRNN),并给出了其体系框图和实现算法。 相似文献
2.
《数字社区&智能家居》2008,(Z2)
本文基于遗传算法的思想,并结合关联规则挖掘的要求与特点,提出了一个基于遗传算法的关联规则挖掘方法,通过实例,分析给出了详细的利用遗传算法挖掘关联规则的实现方法,并提出双层循环结构,利用基因重组、一致变异以及自适应参数的手段调整遗传算法进行数据挖掘,以此证明利用这个模型来发现关联规则是可行的、有效的.最后指出遗传算法的特点和基于遗传算法的关联规则挖掘技术的前景. 相似文献
3.
关联规则挖掘是数据挖掘领域中的重要研究内容之一。然而,传统的基于支持度-可信度框架的挖掘方法可能会产生大量不相关、甚至是误导的关联规则。针对现有关联规则挖掘的评价标准存在的问题,提出在评价标准中增加兴趣度,并给出了兴趣度的定义和基于兴趣度的关联规则挖掘算法。利用兴趣度将关联规则分为正关联规则和负关联规则,从而可以用算法挖掘带有负项的关联规则。实验结果分析表明,在传统挖掘方法的基础上引入兴趣度,可以有效地减少正关联规则的规模,产生有意义的负关联规则。 相似文献
4.
关联规则挖掘是数据挖掘领域中的重要研究内容之一。然而,传统的基于支持度-可信度框架的挖掘方法可能会产生大量不相关、甚至是误导的关联规则。针对现有关联规则挖掘的评价标准存在的问题,提出在评价标准中增加兴趣度,并给出了兴趣度的定义和基于兴趣度的关联规则挖掘算法。利用兴趣度将关联规则分为正关联规则和负关联规则,从而可以用算法挖掘带有负项的关联规则。实验结果分析表明,在传统挖掘方法的基础上引入兴趣度,可以有效地减少正关联规则的规模,产生有意义的负关联规则。 相似文献
5.
该文介绍了关联规则挖掘的基本原理,并在此基础上提出了一种基于关联规则挖掘的网络行为分析系统设计方案。该方案采用一种主动的监控分析模型,可以及时的分析用户网络访问行为,并对发现的用户异常行为进行一定的引导和管理。文中详细描述了该系统方案的总体结构和主要模块设计方法。 相似文献
6.
联机分析关联规则挖掘的研究 总被引:1,自引:0,他引:1
在对关联挖掘、数据仓库、OLAP研究的基础之上,提出了联机分析关联规则挖掘的方法,并给出了针对该方法的特定算法。研究表明,同孤立的关联规则挖掘方法相比,该方法具有较大的灵活性和更高的效率。 相似文献
7.
关联规则挖掘与分类规则挖掘的比较研究 总被引:1,自引:0,他引:1
关联规则挖掘与分类规则挖掘都是数据挖掘,领域中很重要的技术。本文首先简要介绍了关联规则挖掘和分类规则挖掘的基本知识,主要从挖掘目的、发现规则算法的方法、算法的设计思想等几个方面对它们进行了比较,最后介绍了它们之间的联系。 相似文献
8.
9.
神经网络在确定关联规则挖掘算法权值中的应用研究 总被引:1,自引:0,他引:1
提出了运用神经网络确定权值的方法,将网络告警信息的三个主要属性作为神经网络的输入,通过样本的训练来确定神经网络的连接权,从而识别网络告警的权值。这种权值确定法既体现了专家的经验知识,又能够随着网络拓扑的变化更新连接权。建模及仿真结果表明,与其他权值确定方法相比,神经网络方法更加实用和有效。 相似文献
10.
基于关联图的关联规则挖掘算法研究 总被引:15,自引:0,他引:15
在挖掘关联规则的过程中 ,一个关键的步骤是产生频繁项目集 .本文给出一种基于关联图的关联规则挖掘算法 ,并将它与性能比较好的关联规则挖掘算法 DHP进行了比较 ,结果表明 ,本文的算法优于 DHP算法 相似文献
11.
关联规则挖掘是数据挖掘的一项重要技术,它主要是通过频繁项集挖掘得到关联规则。基于云计算的MapReduce模型的数据挖掘算法可以提高挖掘的效果及性能。 相似文献
12.
传统关联规则挖掘可能会得到大量的、杂乱的规则,它们对用户来说是不相关的或不感兴趣的。提出最小关联规则集和项集强依赖关系的概念,以实现基于项集依赖的最小关联规则挖掘算法。其不仅可以避免验证某一频繁项集下的所有非空真子集是否可形成关联规则,还可以通过删除那些过于复杂、有重复信息的规则来进一步简化传统规则集合。通过最小关联规则集可推导得到大多数冗余规则的支持度和置信度,实现了传统规则集的一种近似无损表述。采用UCI机器学习库中数据集进行实验,结果表明提出的方法得到的规则数量明显减少,且规则更加简短、无重复信息,为最小关联规则挖掘提供了更好的方法。 相似文献
13.
基于隐私保护的关联规则挖掘在挖掘项集之间的相关联系的同时,可以保护数据提供者的隐私。基于数据变换法,提出使用高效数据结构即倒排文件的隐私保护关联规则挖掘算法IFB-PPARM。针对特定的敏感规则以及给定的最小支持度和置信度,得到所需要修改的敏感事务并对其做适当的处理。算法只需对事务数据库做一次扫描,并且所有对事务的处理操作都在事务数据库映射成的倒排文件中进行。分析表明,该算法具有较好的隐私性和高效性。 相似文献
14.
提出了一种新的基于模糊概念的量化关联规则挖掘方法,该方法利用在量化属性域上定义的一组模糊概念表示属性间的关联关系,克服了传统的离散分区法的不足,使得规则的表示自然,简明,有利于专家理解,同时,给出了挖掘算法。 相似文献
15.
一种有效的关联规则的挖掘方法 总被引:13,自引:1,他引:13
提出简单关联规则的定义,并证明传统算法挖出的规则集中的任何规则均可以由简单关联规则生成,而简单关联规则的数量远远小于传统算法挖掘出的规则数量,从理论上证明了简单关联规则算法的优越性。 相似文献
16.
基于确信因子的有效关联规则挖掘 总被引:1,自引:0,他引:1
通过对现有的关联规则算法分析与研究发现,生成的关联规则具有相大的冗余性,且可能是无趣的,甚至是虚假的,为此人们主要提出了兴趣度作为有效规则评判标准。该文在先前研究的基础上,以确信因子为基础,提出确信度来使规则的有效性判断更加客观、合理。同时在算法中引入规则取舍,提高了挖掘有效规则的效率。 相似文献
17.
18.
论文先介绍数据挖掘中关联规则理论知识,包括Apriori经典算法、支持度、可信度等概念。以一个超市的销售模型系统为例,建立一个sales数据库系统,由关系数据库管理系统和数据仓库挖掘工具进行单维及多维关联规则挖掘。 相似文献
19.
提出一种基于人工免疫方法的关联规则提取算法,将人工免疫方法应用于关联规则的提取。本算法采取“随机并行搜索”策略,快速识别出候选关联规则,整个挖掘过程最后只需扫描数据库一遍,也不需生成大量的频繁项目集,从而提高关联规则挖掘的总体性能。 相似文献