首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Context: A stable topical ophthalmic curcumin formulation with high solubility, stability, and efficacy is needed for pharmaceutical use in clinics.

Objectives: The objective of this article was to describe a novel curcumin containing a nanomicelle formulation using a polyvinyl caprolactam–polyvinyl acetate–polyethylene glycol (PVCL–PVA–PEG) graft copolymer.

Methods: Nanomicelle curcumin was formulated and optimized and then further evaluated for in vitro cytotoxicity/in vivo ocular irritation, in vitro cellular uptake/in vivo corneal permeation, and in vitro antioxidant activity/in vivo anti-inflammatory efficacy.

Results: The solubility, chemical stability, and antioxidant activity were greatly improved after the encapsulation of the PVCL–PVA–PEG nanomicelles. The nanomicelle curcumin ophthalmic solution was simple to prepare and the nanomicelles are stable to the storage conditions, and it had good cellular tolerance. Nanomicelle curcumin also had excellent ocular tolerance in rabbits. The use of nanomicelles significantly improved in vitro cellular uptake and in vivo corneal permeation as well as improved anti-inflammatory efficacy when compared with a free curcumin solution.

Conclusions: These findings indicate that nanomicelles could be promising topical delivery systems for the ocular administration of curcumin.  相似文献   


2.
Context: Prediction of the in vivo absorption of poorly soluble drugs may require simultaneous dissolution/permeation experiments. In vivo predictive media have been modified for permeation experiments with Caco-2 cells, but not for excised rat intestinal segments.

Objective: The present study aimed at improving the setup of dissolution/permeation experiments with excised rat intestinal segments by assessing suitable donor and receiver media.

Methods: The regional compatibility of rat intestine in Ussing chambers with modified Fasted and Fed State Simulated Intestinal Fluids (Fa/FeSSIFmod) as donor media was evaluated via several parameters that reflect the viability of the excised intestinal segments. Receiver media that establish sink conditions were investigated for their foaming potential and toxicity. Dissolution/permeation experiments with the optimized conditions were then tested for two particle sizes of the BCS class II drug aprepitant.

Results: Fa/FeSSIFmod were toxic for excised rat ileal sheets but not duodenal sheets, the compatibility with jejunal segments depended on the bile salt concentration. A non-foaming receiver medium containing bovine serum albumin (BSA) and Antifoam B was nontoxic. With these conditions, the permeation of nanosized aprepitant was higher than of the unmilled drug formulations.

Discussion: The compatibility of Fa/FeSSIFmod depends on the excised intestinal region. The chosen conditions enable dissolution/permeation experiments with excised rat duodenal segments. The experiments correctly predicted the superior permeation of nanosized over unmilled aprepitant that is observed in vivo.

Conclusion: The optimized setup uses FaSSIFmod as donor medium, excised rat duodenal sheets as permeation membrane and a receiver medium containing BSA and Antifoam B.  相似文献   


3.
Context: Combination anticancer therapy is promising to generate synergistic anticancer effects, to maximize the treatment effect and to overcome multi-drug resistance. Nanostructured lipid carriers (NLCs), composed of solid and liquid lipids, and surfactants are potentially good colloidal drug carriers.

Objective: The aim of this study is to construct novel NLCs as nanocarriers for co-delivery of doxorubicin (DOX) and cisplatin (CDDP) to treat breast cancer.

Methods: DOX and CDDP loaded NLCs (D–C-NLCs) were prepared by the solvent diffusion method. The in vitro cytotoxicity and synergistic studies of different formulations were evaluated on human breast cancer cells (doxorubicin resistant) (MCF-7/ADR cells). In vivo anti-tumor effects were observed on the murine bearing MCF-7/ADR cells model.

Results: D–C-NLCs showed the highest cytotoxicity and synergistic effect of two drugs in tumor cells in vitro. The in vivo study revealed the greatest anti-tumor activity than the other formulations in the breast cancer model.

Conclusion: The constructed NLCs could be used as a novel carrier for co-delivery of DOX and CDDP for breast cancer therapy. D–C-NLCs could be a promising targeted and combinational therapy nanomedicine.  相似文献   


4.
Context: Combination therapies provide a potential solution to address the tumor heterogeneity and drug resistance issues by taking advantage of distinct mechanisms of action of the multiple therapeutics.

Objective: To design arginine-glycineaspartic acid (RGD) modified lipid-coated nanoparticles (NPs) for the co-delivery of the hydrophobic drugs against hepatocellular carcinoma (HCC).

Materials and methods: RGD modified lipid-coated PLGA NPs were developed for the targeted delivery of both sorafenib (SRF) and quercetin (QT) (RGD-SRF-QT NPs). Chemical–physical characteristics and release profiles were evaluated. In vitro cell viability assays were carried out on HCC cells. In vivo antitumor efficacies were evaluated in HCC animal model.

Results and discussion: The combination of SRF and QT formulations was more effective than the single drug formulations in both NPs and solution groups. RGD-SRF-QT NPs achieved the most significant tumor growth inhibition effect in vitro and in vivo.

Conclusion: The resulting NPs could provide a promising platform for co-delivery of multiple anticancer drugs for achievement of combinational therapy and could offer potential for enhancing the therapeutic efficacy on HCC.  相似文献   


5.
Using an interactive multiobjective optimization method called NIMBUS and an approximation method called PAINT, preferable solutions to a five-objective problem of operating a wastewater treatment plant are found. The decision maker giving preference information is an expert in wastewater treatment plant design at the engineering company Pöyry Finland Ltd. The wastewater treatment problem is computationally expensive and requires running a simulator to evaluate the values of the objective functions. This often leads to problems with interactive methods as the decision maker may get frustrated while waiting for new solutions to be computed. Thus, a newly developed PAINT method is used to speed up the iterations of the NIMBUS method. The PAINT method interpolates between a given set of Pareto optimal outcomes and constructs a computationally inexpensive mixed integer linear surrogate problem for the original wastewater treatment problem. With the mixed integer surrogate problem, the time required from the decision maker is comparatively short. In addition, a new IND-NIMBUS® PAINT module is developed to allow the smooth interoperability of the NIMBUS method and the PAINT method.  相似文献   

6.
Objective: In this study, solid dispersion (SD) for oral delivery of a poorly water-soluble drug, coenzyme Q10 was developed by supercritical fluid technology and characterized in vitro and in vivo.

Methods: Dissolution was used to optimize the formulations of CoQ10-SD. The physicochemical properties of SD were investigated by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and scanning electron microscopy (SEM). The supercritical fluid chromatography–electrospray ionization tandem mass spectrometry (SFC–ESI-MS/MS) was used for the in vivo study.

Results: The results of DSC and PXRD indicated that the drug in SD was in amorphous state. In vitro drug release, the dissolution of coenzyme Q10 in solid dispersion improved to 78.8% compared with commercial tablets of 0.16%. The area under ct curve (AUC0–72h) and mean maximum concentrations (Cmax) of CoQ10-SD were 2.43-fold and 3.0-fold, respectively higher than that of commercial tablets in rats, confirming improved bioavailability.

Conclusion: Supercritical fluid technology was successfully used for the preparation and analysis of CoQ10-SD for the first time and significantly improved the dissolution and bioavailability of coenzyme Q10.  相似文献   


7.
Objective: Clinically relevant critical quality attributes (CQA’s) were identified for the development of generic drug products containing fluconazole and potential design spaces relevant to the clinical application of the drug candidate was explored.

Significance: A simplified scoring system for the biopharmaceutics risk assessment roadmap (BioRAM) is proposed to guide product development.

Methods: Factorial design of experiments was employed to study the effect of formulation and process variables on CQA’s. The in vivo model was developed for predicting the fraction of drug absorbed and to identify the effect of formulation components on drug absorption.

Results: BioRAM yielded low scores for fluconazole absorption with respect to severity (risks of sub and supra-bioavailable drug products), probability of incidence of bioinequivalent results and capacity of detection. The results demonstrated that dissolution was highly influenced by the active pharmaceutical ingredient (API) polymorphism and the ratio of diluents. Process variables (mixing time, lubricant concentration, lubrication time and filling speed) did not impact the clinical outcome of the formulation with respect to dissolution and content uniformity.

Conclusions: Understanding the clinical implications of the adopted formulation approach led to the construction of purposeful design space and control strategy.  相似文献   


8.
Aim: The aim of this study was to investigate whether the filling level within the feed frame of a rotary tablet press can be quantified by laser triangulation combined with the angle recognition of one paddle wheel via rotary encoder.

Significance: Rotary tablet press feed frames are supposed to assure a uniform die filling and, thus, to guarantee the weight and content uniformity of the resulting tablets. Therefore, a constant bulk availability and flow within the feed frame is crucial and has to be ensured by the feed frame design and the operating conditions. So far, there is no instrument available to monitor the bulk filling level or the bulk distribution within feed frames.

Methods: Calcium phosphate dihydrate was used as model powder. The powder surface level was determined via laser triangulation and the angle position of the paddle wheel was monitored via incremental rotary encoder. The data of both parameters was acquired synchronously and evaluated by in-house written software.

Results: Different powder masses led to significantly different filling level signals. The experiments showed a high reproducibility of the determined filling levels. Furthermore, an influence of the rotational speed on the powder distribution was observed.

Conclusions: The developed instrument may be used for quantification of the volumetric filling level within rotary tablet press feed frames. It may either be used to better understand the powder behavior within feed frames or for improvement of the die filling process by implementing the device into a feedback loop.  相似文献   


9.
Objective: We have previously shown that aerosolized liposomes with dipalmitoyl phosphatidylcholine (DPPC) enhance the pulmonary absorption of encapsulated insulin. In this study, we aimed to compare insulin encapsulated into the liposomes versus co-administration of empty liposomes and unencapsulated free insulin, where the DPCC liposomes would serve as absorption enhancer.

Significance: The present study provides the useful information for development of noninvasive treatment of diabetes.

Methods: Co-administration of empty DPPC liposomes and unencapsulated free insulin was investigated in vivo to assess the potential enhancement in protein pulmonary absorption. Co-administration was compared to DPPC liposomes encapsulating insulin, and free insulin.

Results: DPPC liposomes enhanced the pulmonary absorption of unencapsulated free insulin; however, the enhancing effect was lower than that of the DPPC liposomes encapsulating insulin. The mechanism of the pulmonary absorption of unencapsulated free insulin by DPPC liposomes involved the opening of epithelial cell space in alveolar mucosa, and not mucosal cell damage, similar to that of the DPPC liposomes encapsulating insulin. In an in vitro stability test, insulin in the alveolar mucus layer that covers epithelial cells was stable. These findings suggest that, although unencapsulated free insulin spreads throughout the alveolar mucus layer, the concentration of insulin released near the absorption surface is increased by the encapsulation of insulin into DPPC liposomes and the absorption efficiency is also increased.

Conclusion: We revealed that the encapsulation of insulin into DPPC liposomes is more effective for pulmonary insulin absorption than co-administration of DPPC liposomes and unencapsulated free insulin.  相似文献   


10.
Context: The SeDeM expert system is based on the experimental study and quantitative determination of the characterization parameters of powdered substances, the aim being to determine whether a substance is suitable for producing tablets by means of direct compression (DC) technology, thereby reducing the lead time for pre-formulation studies. Additionally, this expert system also provides formulations with a minimum number of excipients.

Objective: We used this system to analyze suitable formulas for the production of orodispersible ibuprofen tablets.

Method: Twenty-one disintegrants and ibuprophen were characterized using SeDeM methodology.

Results: The results indicated that production of ibuprofen tablets by DC would require improvements in the dimension and compressibility factors of the active pharmaceutical ingredient. The expert system analysis provided the specific percentage of disintegrant needed to blend with ibuprofen and a standardized formula of lubricants in order to obtain a powder mix that would successfully produce tablets by DC. The eight formulas proposed by SeDeM were produced and tested in the laboratory.

Conclusion: All eight formulas successfully produced tablets by DC, but only four of them could be considered suitable for use as an orodispersible tablet and accomplishes all the pharmaceutical quality parameters. So, in fact, the use of the SeDeM system reduced the time of medicine’s development and therefore the cost of the activity.  相似文献   


11.
Context: Advancement in technology has transformed the conventional dosage forms to intelligent drug delivery systems. Such systems are helpful for targeted and efficient drug delivery with minimum side effects. Drug release from these systems is governed and controlled by external stimuli (pH, enzymes, ions, glucose, etc.). Polymeric biomaterial having stimuli-responsive properties has opened a new area in drug delivery approach.

Objective: Potential of a polysaccharide (rhamnogalacturonan)-based hydrogel from Linseeds (Linum usitatissimum L.) was investigated as an intelligent drug delivery material.

Materials and methods: Different concentrations of Linseed hydrogel (LSH) were used to prepare caffeine and diacerein tablets and further investigated for pH and salt solution-responsive swelling, pH-dependent drug release, and release kinetics. Morphology of tablets was observed using SEM.

Results: LSH tablets exhibited dynamic swelling–deswelling behavior with tendency to swell at pH 7.4 and in deionized water while deswell at pH 1.2, in normal saline and ethanol. Consequently, pH controlled release of the drugs was observed from tablets with lower release (<10%) at pH 1.2 and higher release at pH 6.8 and 7.4. SEM showed elongated channels in swollen then freeze-dried tablets.

Discussion: The drug release was greatly influenced by the amount of LSH in the tablets. Drug release from LSH tablets was governed by the non-Fickian diffusion.

Conclusions: These finding indicates that LSH holds potential to be developed as sustained release material for tablet.  相似文献   


12.
Context: Solution-mediated transformation has been cited as one of the main problems that deteriorate dissolution performances of solid dispersion (SD). This is mainly attributed by the recrystallization tendency of poorly soluble drug. Eventually, it will lead to extensive agglomeration which is a key process in reducing the dissolution performance of SD and offsets the true benefit of SD system. Here, a post-processing treatment is suggested in order to reduce the recrystallization tendency and hence bring forth the dissolution advantage of SD system.

Objectives: The current study investigates the effect of a post processing treatment on dissolution performance of SD in comparison to their performances upon production.

Methods: Two poorly soluble drugs were spray dried into SD using polyvinyl alcohol (PVA) as hydrophilic carrier. The obtained samples were post processing treated by exposure to high humidity, i.e. 75% RH at room temperature. The physical properties and release rate of the SD system were characterized upon production and after the post-processing treatment.

Results and discussion: XRPD, Infrared and DSC results showed partial crystallinity of the fresh SD systems. Crystallinity of these products was further increased after the post-processing treatment at 75% RH. This may be attributed to the high moisture absorption of the SD system that promotes recrystallization process of the drug. However, dissolution efficiencies of the post-treated systems were higher and more consistent than the fresh SD. The unexpected dissolution trend was further supported by the results intrinsic dissolution and solubility studies.

Conclusions: An increase of crystallinity in a post humidity treated SD did not exert detrimental effect to their dissolution profiles. A more stabilized system with a preferable enhanced dissolution rate was obtained by exposing the SD to a post processing humidity treatment.  相似文献   


13.
Objective: This work aimed to develop and characterize a topical emulgel of amphotericin B (AmB) with bacuri butter (Platonia insignis Mart.) and evaluate its antileishmanial activity using in vitro assays.

Significance: Leishmaniasis is considered an infectious disease, with high incidence and capacity to produce deformities. The first-line treatment recommended by WHO, with pentavalent antimonials, is aggressive and very toxic. Therefore, the development of topical treatments can emerge as a promising and less offensive alternative.

Methods: The developed formulations were evaluated for organoleptic characteristics, centrifugation resistance, globule size, pH, electrical conductivity, viscosity, spreadability, drug content, preliminary stability, in vitro release profile, evaluation of antileishmanial activity using promastigotes forms of Leishmania major as infecting agents, macrophage cytotoxicity and selectivity index (IS).

Results: Formulated emulsions presented organoleptic characteristics compatible with its constituents; pH values were suitable for topical application, ranging from 4.73 to 5.02; introduced non-Newtonian shear thinning system; drug content was within the established standards, and the most suitable kinetic model of release was the first order. Regarding the in vitro assays, formulations containing both 1% and 3% of AmB presented similar outcomes, indicating a synergism between the bacuri butter and the drug, possibly showing a reduction on cytotoxicity to host cells.

Conclusions: It was concluded that the formulations developed showed promising antileishmanial action and high potential for topical use.  相似文献   


14.
Context: LR-peptide, a novel hydrophilic peptide synthetized and characterized in previous work, is able to reduce the multi-drug resistance response in cisplatin (cDPP) resistant cancer cells by inhibiting human thymidylate synthase (hTS) overexpressed in several tumors, including ovarian and colon-rectal cancers, but it is unable to enter the cells spontaneously.

Objective: The aim of this work was to design and characterize liposomal vesicles as drug delivery systems for the LR peptide, evaluating the possible benefits of the pH-responsive feature in improving intracellular delivery.

Materials and methods: For this purpose, conventional and pH-sensitive liposomes were formulated, compared regarding their physical-chemical properties (size, PDI, morphology, in vitro stability and drug release) and studied for in vitro cytotoxicity against a cDDP-resistant cancer cells.

Results and discussion: Results indicated that LR peptide was successfully encapsulated in both liposomal formulations but at short incubation time only LR loaded pH-sensitive liposomes showed cell inhibition activity while for long incubation time the two kinds of liposomes demonstrated the same efficacy.

Conclusions: Data provide evidence that acidic pH-triggered liposomal delivery is able to significantly reduce the time required by the systems to deliver the drug to the cells without inducing an enhancement of the efficacy of the drug.  相似文献   


15.
Objective: The aim of this study is to evaluate the relative stability of pharmaceutical cocrystals consisting of paracetamol (APAP) and oxalic acid (OXA) or maleic acid (MLA).

Significance: These observations of cocrystal stability under various conditions are useful coformer criteria when cocrystals are selected as the active pharmaceutical ingredient in drug development.

Method: The relative stability was determined from the preferentially formed cocrystals under various conditions.

Result: Cocrystal of APAP–OXA was more stable than that of APAP–MLA in a ternary cogrinding system and possessed thermodynamical stability. On the other hand, when grinding with moisture or maintaining at high temperatures and relative humidity conditions, APAP–MLA was more stable, and OXA converted to OXA dihydrate. In the slurry method, APAP–OXA was more stable in aprotic solvents because the APAP–OXA with low-solubility product precipitated.

Conclusions: The relative stability order was affected by preparing conditions of presence of moisture. This order might attribute to the small difference of crystal structure in the extension of the hydrogen bond network.  相似文献   


16.
Background: Targeted hepatocellular carcinoma (HCC) therapy was carried out to improve the efficacy of liver cancers. The aim of this study was to develop transferrin (Tf) modified, self-assembled polymeric nanoparticles for co-delivery doxorubicin (DOX) and cisplatin (DDP), to achieve combination tumor therapy.

Methods: Tf modified polyethylene glycol (PEG) containing DOX prodrug (Tf-PEG-DOX) was synthesized. DDP containing poly(lactic-co-glycolic) acid (PLGA) materials (PLGA-DDP) were prepared. Tf modified DOX and DDP loaded PLGA nanoparticles (Tf-DOX/DDP NPs) were prepared by using nanoprecipitation method. The particles sizes, zeta potentials, drug loading effects were characterized. The cytotoxicity of the NPs was evaluated in human hepatoma carcinoma cell lines (HepG2 cells), and in vivo anti-tumor was observed in mice bearing human HepG2 cells model.

Results: Tf-DOX/DDP NPs displayed higher cytotoxicity and enhanced antitumor activity both in vitro and in vivo over their non-modified and single drug loaded counterparts.

Conclusion: Tf-DOX/DDP NPs can achieve outstanding anti-tumor activity due to the combination effect of two drugs and the active targeting ability of Tf ligands. The self-assembled polymeric nanomedicine could act as an efficient therapy method for HCC treatment.  相似文献   


17.
Context: Taste masking greatly influences the acceptability of bitter tasting formulation; moreover, it governs the commercial and therapeutic success of drug products.

Objective: This work is directed toward masking the bitter taste of ondansetron HCl (ONS) utilizing the excipient, which can delay the reach of drug to the taste buds.

Material and methods: Magnesium aluminum silicate (Veegum F), a clay material having capability to adsorb the drugs onto it, was used. The adsorption systems of ONS with Veegum were obtained by dynamic adsorption technique and examined by scanning electron microscopy, differential scanning calorimetry, Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) for morphology, thermal behavior, and interactions. The taste assessment of prepared systems was done by in vitro method based on drug release.

Results: The molecular interaction between ONS and Veegum in the system was revealed by FTIR spectroscopy. A change in thermal behavior of the system was observed owing to interaction or replacement of the cationic groups of Veegum with that of ONS. XRD studies revealed that the prepared system was having lower crystallinity as compared to ONS. The in vitro drug release study showed that ONS release from the system was relatively slow in basic environment than the acidic one.

Discussion: Adsorption of ONS on the surface of Veegum was mainly due to electrostatic interactions and hydrogen bonding.

Conclusion: The experimental results reveal the successful intercalation of ONS into the space available between the layers of Veegum. Furthermore, this resulted in a control on drug release in salivary pH resulting in a concentration lower than bitterness threshold.  相似文献   


18.
Electrospun polyvinylidene fluoride (PVDF)-containing carbon nanotubes (CNT) were prepared for use in fabricating actuator materials. Actuating displacement was measured in an electrochemical environment. The electrospun nanofibers were arranged using a drum-type collector, and morphology was investigated using a field emission-scanning electron microscope. The uniformity of dispersion of CNT in the PVDF nanofibers was monitored by electron probe X-ray micro-analysis. Tensile strength and electrical resistivity results were used as an indication of the state of alignment. The electrospun CNT/PVDF nanofiber sheets exhibited better mechanical and electrical properties in the arranged direction. The efficiency and electrical capacities of electrospun CNT/PVDF nanofiber sheet were compared with those of cast PVDF sheets for use in actuator applications in electrochemical environments. The electrospun CNT/PVDF nanofiber sheets exhibited much better actuator performance than PVDF sheets, which are attributed to their superior electrical properties.

Highlights

(1) The interfacial durability of CNT/PVDF nanofibers was enhanced to increase contact area by reinforcing CNT.

(2) The efficiency of CNT/PVDF actuators was improved due to interfacial properties.

(3) Thin thickness drum-type collector was made to enhance nanofiber alignment.

(4) The arranged CNT/PVDF nanofibers exhibited better mechanical and actuating displacements.  相似文献   


19.
Context: Bosentan is a poorly soluble drug and pose challenges in designing of drug delivery systems.

Objective: The objective of this study is to enhance the solubility, dissolution and shelf-life of bosentan by formulating it as S-SMEDDS capsules.

Materials and methods: Solubility of bosentan was tested in various liquid vehicles such as oils (rice bran and sunflower), surfactants (span 20 and tween 80) and co-surfactants (PEG 400 and propylene glycol) and microemulsions were developed. Bosentan was incorporated into appropriate microemulsion systems which were previously identified from pseudo ternary phase diagrams. Bosentan-loaded SMEDDS were evaluated for drug content, drug release, zeta potential, and droplet size. The selected liquid SMEDDS were converted into solid SMEDDS by employing adsorption and melt granulation. Solid SMEDDS were characterized for micromeritics and evaluated for drug content, drug release, and shelf-life.

Results: Isotropic systems R5, R13, S5, and S13 with submicron droplet size had exhibited 85.45, 94.12, 81.67, and 96.64% drug release, respectively. Solid SMEDDS of MR13 and AS13 formulations with rapid reconstitution ability, exhibited 84.85 and 86.74% of on par drug release. The formulations were physicochemically intact for 1.02 and 1.56 years.

Discussion: Liquid SMEDDS composed with PEG400 had displayed optimal characters. Solid SMEDDS had high-dissolution profiles than bosentan due to modification in the crystalline structure of drug upon microemulsification.

Conclusion: Thus, solid SMEDDS addressed the solubility, dissolution, and stability issues of bosentan and becomes an alternate for clinical convenience.  相似文献   


20.
Objective: The deeper research of N-octyl-N-arginine chitosan (OACS) as intravenous delivery was characterized, cell uptake study, pharmacokinetics, and biodistribution of OACS micelles (GA–OACS) were investigated.

Significance: Gambogic acid (GA) can inhibit the growth of various cancer cells. However, the short elimination half-life time and treatment without targeting limits its application. OACS was synthesized as delivery carrier for GA by us, but the deeper characterization of OACS, such as molecular modeling, pharmacokinetics, and biodistribution were not investigated.

Methods: Gambogic acid loaded OACS micelles (GA–OACS) were evaluated by the molecular modeling, characterized by TEM, DLS, IR, 1HNMR, XRD. Confocal laser scanning microscope and flow cytometry were analyzed for cell uptake study. Imaging analysis was used to show the distribution of OACS in vivo directly, pharmacokinetics and biodistribution were also investigated.

Results: The molecular modeling result showed that GA could encapsulated stably in the core of OACS micelles. TEM, IR, 1HNMR, and XRD also suggested that GA was encapsulated in amorphous form in the core of OACS micelles. AUC and elimination half-life of GA–OACS were all increased by 1.5-fold and 2.0-fold compared with GA–ARG in rat, respectively. Biodistribution study indicated that GA–OACS was distributed mainly in the liver. GA amount in the kidney and heart was greatly reduced in the GA–OACS group. From the imaging analysis, OACS distribution in the liver was the most.

Conclusions: OACS was an excellent carrier for GA intravenous delivery to prolong half-life. Moreover, OACS targeted on liver.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号