首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
In this work, solid lipid nanoparticles loaded with cucurbitacin B (Cu B-SLNs) were prepared. It was found that the concentration of poloxamer 188 and soybean lecithin had effects on the mean particle size and size distribution. The zeta potentials were around ?33 mV. In vitro release studies showed a sustained release after a burst release. Internalization of Cu B into HepG2 cells could be enhanced by the encapsulation of SLN matrix. The IC50 values of Cu B-SLNs were lower than that of Cu B solution. Both free Cu B and Cu B-SLNs had effectively inhibited the tumor growth and displayed a dose-dependent anti-tumor efficacy. Cu B-SLNs at a dose of 0.11?mg/kg produced the greatest anti-tumor effects (53.3%), which was significant higher than Cu B solution (31.5%, p < 0.05). Cu B-SLNs showed a longer MRT in vivo. The AUC of Cu B-SLNs for tumor increased 3.5 –fold when compared to Cu B solution. The targeting efficiency of Cu B-SLNs was 1.94 times higher in liver as compared to that of Cu B solution. These results indicated that Cu-B SLNs could passively target the tumor with EPR effect, improve the therapeutic efficacy of Cu B, and reduce the doses.  相似文献   

2.
In this study, the PEGylated nanostructured lipid carriers (PEG-NLC) were constructed for the intravenous delivery of 17-allylamino-17-demethoxygeldanamycin (17AAG). 17AAG-PEG-NLC was successfully prepared by the method of emulsion evaporation at a high temperature and solidification at a low temperature using a mixture of glycerol monostearate and PEG2000-stearate as solid lipids, and medium-chain triglyceride as the liquid lipid. The results revealed that the morphology of the NLC was spheroidal. The particle size, zeta potential and entrapment efficiency for 17AAG-PEG-NLC were observed as 189.4?nm, ?20.2 mV and 83.42%, respectively. X-ray diffraction analysis revealed that 17AAG existed as amorphous structures in the nanoparticles. In the in vitro release study, the 17AAG from 17AAG-PEG-NLC exhibited a biphasic release pattern with burst release initially and sustained release afterwards. In addition, 17AAG-PEG-NLC showed a significantly higher in vitro antitumor efficacy and longer retention time in vivo than 17AAG solution. These results indicated that 17AAG-PEG-NLC may offer a promising alternative to the current 17AAG formulations for the treatment of solid tumors.  相似文献   

3.
Flurbiprofen is used in the treatment of arthritis. However, its multiple dosing due to short elimination half life is a concern for such treatment. This work aims to develop nanostructured lipid carriers (NLCs) of flurbiprofen and evaluate their potential for transdermal delivery. The NLCs were prepared by the optimized o/w emulsification-homogenization-sonication technique using coconut oil (liquid lipid). The NLCs were found to be spherical with uniform size (214 nm). The entrapment efficiency and zeta potential were 92.58% and ?30.70 mV, respectively. Differential scanning calorimetry (DSC) showed the amorphous state of flurbiprofen encapsulated in NLCs. The percentage cumulative drug release through the excised rat skin from NLCs was biphasic and significantly prolonged compared with the commercial gel. DSC of the treated skin indicated that the NLCs penetrate into follicles of the skin and accumulate in the dermis. The bioavailability of flurbiprofen from NLCs was more than 1.7-fold that of the commercial gel. The NLCs showed a quick onset and sustained anti-inflammatory effect over period of 24 h for carrageenan-induced rat paw edema than the commercial gel. The stability data revealed that the NLCs were more stable when stored at 5°C. In conclusion, prepared NLCs have potential for skin targeting and sustained drug release.  相似文献   

4.
The study was aimed toward development of modified release oral drug delivery system for highly water soluble drug, Milnacipran HCl (MH). Novel Tablet in Tablet system (TITs) comprising immediate and extended release dose of MH in different parts was fabricated. The outer shell was composed of admixture of MH, lactose and novel herbal disintegrant obtained from seeds of Lepidium sativum. In the inner core, MH was matrixed with blend of hydrophilic (Benecel®) and hydrophobic (Compritol®) polymers. 32 full factorial design and an artificial neuron network (ANN) were employed for correlating effect of independent variables on dependent variables. The TITs were characterized for pharmacopoeial specifications, in vitro drug release, SEM, drug release kinetics and FTIR study. The release pattern of MH from batch A10 containing 25.17% w/w Benecel® and 8.21% w/w of Compritol® exhibited drug release pattern close proximal to the ideal theoretical profile (t50% = 5.92?h, t75% = 11.9?h, t90% = 18.11 h). The phenomenon of drug release was further explained by concept of percolation and the role of Benecel® and Compritol® in drug release retardation was studied. The normalized error obtained from ANN was less, compared with the multiple regression analysis, and exhibits the higher accuracy in prediction. The results of short-term stability study revealed stable chataracteristics of TITs. SEM study of TITs at different dissolution time points confirmed both diffusion and erosion mechanisms to be operative during drug release from the batch A10. Novel TITs can be a succesful once a day delivery system for highly water soluble drugs.  相似文献   

5.
Nifedipine (NFD) has been used for the treatment of cutaneous lesions caused by peripheral vascular disease and diabetic ulcers. NFD was formulated at 8% in three semi-solid formulations: Polaxamer 407 Lecithin Organogel (PLO), PLO plus Transcutol®, and an oil-in-water (o/w) emulsion. In vitro release and permeation tests were carried out using a synthetic (cellulose acetate) or natural membrane (pig ear skin), respectively, mounted in a Franz-type diffusion cell at 37°C in a constant water bath. As a receptor solution, isotonic phosphate buffer at pH 7.4 was used. All samples were analyzed by high-performance liquid chromatography by employing a previously validated method. The drug flow values were 6.126?±?0.288, 4.030?±?0.081, and 6.660?±?0.254 μg/cm2/h for PLO, PLO plus Transcutol®, and o/w emulsion, respectively. The three formulations did not show significant differences in drug flow, considering p > 0.05. Furthermore, their penetration profiles in both the epidermis and dermis were statistically different. Thus, the incorporation of NFD in PLO, PLO plus Transcutol®, and o/w emulsion changed the drug thermodynamic activity, as expected. In addition, Transcutol® increased the solubility of NFD in the formulation and promoted its penetration in both the epidermis and dermis.  相似文献   

6.
The present work was aimed at developing an optimized oral nanostructured lipid carrier (NLC) formulation of poorly soluble atorvastatin Ca (AT Ca) and assessing its in vitro release, oral bioavailability and pharmacodynamic activity. In this study, chlorogenic acid, a novel excipient having synergistic cholesterol lowering activity was utilized and explored in NLC formulation development. The drug-loaded NLC formulations were prepared using a high pressure homogenization technique and optimized by the Box-Behnken statistical design using the Design-Expert software. The optimized NLC formulation was composed of oleic acid and stearic acid as lipid phase (0.9% w/v), poloxamer 188 as surfactant (1% w/v) and chlorogenic acid (0.05% w/v). The mean particle size, polydispersity index (PDI) and % drug entrapment efficiency of optimized NLC were 203.56?±?8.57?nm, 0.27?±?0.028 and 83.66?±?5.69, respectively. In vitro release studies showed that the release of drug from optimized NLC formulations were markedly enhanced as compared to solid lipid nanoparticles (SLN) and drug suspension. The plasma concentration time profile of AT Ca in rats showed 3.08- and 4.89-fold increase in relative bioavailability of developed NLC with respect to marketed preparation (ATORVA® tablet) and drug suspension, respectively. Pharmacodynamic study suggested highly significant (**p?0.01) reduction in the cholesterol and triglyceride values by NLC in comparison with ATORVA® tablet. Therefore, the results of in vivo studies demonstrated promising prospects for successful oral delivery of AT Ca by means of its chlorogenic acid integrated NLC.  相似文献   

7.
The current research work was executed with an aim to explore and promote the potential of self-microemusifying drug delivery systems (SMEDDS) in the form of tablets, in order to enhance solubility and oral bioavailability of poorly aqueous soluble drug Repaglinide (RPG). RPG-loaded liquid SMEDDS were developed consisting Labrafil M 1944CS, Kolliphor EL and Propylene glycol, which were then characterized on various parameters. After characterization and optimization, liquid SMEDDS were converted into solid form by adsorbing on Aeroperl® 300 pharma and polyplasdoneTM XL. Further, selection of suitable excipients was done and mixed with prepared solidified SMEDDS powder followed by the preparation of self-microemulsifying tablets (SMET’s) wet granulation–compression method. SMET’s were subjected to differential scanning calorimetry (DSC) and particle X-ray diffraction (RXRD) studies, results of which indicated transformation of crystalline structure of RPG because of dispersion of RPG at molecular level in liquid SMEDDS. This was further assured by micrographs obtained from scanning electron microscope. SMET’s shown more than 85% (30?min) of in vitro drug release in contrast to conventional marketed tablets (13.2%) and pure RPG drug (3.2%). Results of in vivo studies furnished that SMET’s had shown marked decrease in the blood glucose level and prolonged duration of action (up to 8?h) in comparison with conventional marketed tablets and pure RPG drug. In conclusion, SMET’s serves as a promising tool for successful oral delivery of poorly aqueous soluble drug(s) such as RPG.  相似文献   

8.
The aim of the present research was to evaluate the impact of coating layers on release profile from enteric coated dosage forms. Capsules were coated with Eudragit FS 30D using dipping method. The drug profile was evaluated in both phosphate buffer and Hank’s solutions. Utilization X-ray imaging, gastrointestinal transmission of enteric coated capsules was traced in rats. According to the results, no release of the drug was found at pH 1.2, and the extent of release drug in pH 6.8 medium was decreased by adding the coating layers. The results indicated single-layer coated capsules in phosphate buffer were significantly higher than that in Hank’s solution. However, no significant difference was observed from capsules with three coating layers in two different dissolution media. X-ray imaging showed that enteric coated capsules were intact in the stomach and in the small intestine, while disintegrated in the colon.  相似文献   

9.
Objective: The aim of the present investigation was to investigate the efficacy of solid lipid nanoparticles (SLNs) to enhance the absorption and bioavailability of lurasidone hydrochloride (LH) following oral administration.

Methods: The LH loaded SLNs (LH-SLNs) were prepared by high pressure homogenization (HPH) method, optimized using box Behnken design and evaluated for particle size (PS), entrapment efficiency (EE), morphology, FTIR, DSC, XRD, in vitro release, ex vivo permeation, transport studies across Caco-2 cell line and in vivo pharmacokinetic and pharmacodynamic studies.

Results: The LH-SLNs had PS of 139.8?±?5.5?nm, EE of 79.10?±?2.50% and zeta potential of ?30.8?±?3.5?mV. TEM images showed that LH-SLNs had a uniform size distribution and spherical shape. The in vitro release from LH-SLNs followed the Higuchi model. The ex vivo permeability study demonstrated enhanced drug permeation from LH-SLNs (>90%) through rat intestine as compared to LH-suspension. The SLNs were found to be taken up by energy dependent, endocytic mechanism which was mediated by clathrin/caveolae-mediated endocytosis across Caco-2 cell line. The pharmacokinetic results showed that oral bioavailability of LH was improved over 5.16-fold after incorporation into SLNs as compared to LH-suspension. The pharmacodynamic study proved the antipsychotic potential of LH-SLNs in the treatment of schizophrenia.

Conclusion: It was concluded that oral administration of LH-SLNs in rats improved the bioavailability of LH via lymphatic uptake along with improved therapeutic effect in MK-801 induced schizophrenia model in rats.  相似文献   

10.
Development of self-nanoemulsifying drug delivery systems (SNEDDS) of glimepiride is reported with the aim to achieve its oral delivery. Lauroglycol FCC, Tween-80, and ethanol were used as oil, surfactant, and co-surfactant, respectively as independent variables. The optimized composition of SNEDDS formulation (F1) was 10% v/v Lauroglycol FCC, 45% v/v Tween 80, 45% v/v ethanol, and 0.005% w/v glimepiride. Further, the optimized liquid SNEDDS were solidified through spray drying using various hydrophilic and hydrophobic carriers. Among the various carriers, Aerosil 200 was found to provide desirable flow, compression, dissolution, and diffusion. Both, liquid and solid-SNEDDS have shown release of more than 90% within 10?min. Results of permeation studies performed on Caco-2 cell showed that optimized SNEDDS exhibited 1.54 times higher drug permeation amount and 0.57 times lower drug excretion amount than that of market tablets at 4?hours (p?p?>?.05, i.e. 0.74). The formulation was found stable with temperature variation and freeze thaw cycles in terms of droplet size, zeta potential, drug precipitation and phase separation. Crystalline glimepiride was observed in amorphous state in solid SNEDDS when characterized through DSC, PXRD, and FT-IR studies. The study revealed successful formulation of SNEDDS for glimepiride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号