首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background: Although piperine can inhibit cells of tumors, the poor water solubility restricted its clinical application. This paper aimed to develop mixed micelles based on Soluplus® and D-α-tocopherol polyethylene glycol succinate (TPGS) to improve the aqueous solubility and anti-cancer effect.

Methods: Piperine-loaded mixed micelles were prepared using a thin-film hydration method, and their physicochemical properties were characterized. The cellular uptake of the micelles was confirmed by confocal laser scanning microscopy in A549 lung cancer cells and HepG2 liver cancer cells. In addition, cytotoxicity of the piperine mixed micelles was studied in A549 lung cancer cells and HepG2 liver cancer cells. Free piperine or piperine-loaded Soluplus®/TPGS mixed micelles were administered at an equivalent dose of piperine at 3.2?mg/kg via a single intravenous injection in the tail vain for the pharmacokinetic study in vivo.

Results: The diameter of piperine-loaded Soluplus®/TPGS (4:1) mixed micelles was about 61.9?nm and the zeta potential –1.16?±?1.06?mV with 90.9% of drug encapsulation efficiency and 4.67% of drug-loading efficiency. Differential scanning calorimetry (DSC) studies confirmed that piperine is encapsulated by the Soluplus®/TPGS. The release results in vitro showed that the piperine-loaded Soluplus®/TPGS mixed micelles presented sustained release behavior compared to the free piperine. The mixed micelles exhibited better antitumor efficacy compared to free piperine and physical mixture against in A549 and HepG2 cells by MTT assay. The pharmacokinetic study revealed that the AUC of piperine-loaded mixed micelles was 2.56 times higher than that of piperine and the MRT for piperine-loaded mixed micelles was 1.2-fold higher than piperine (p?Conclusion: The results of the study suggested that the piperine-loaded mixed micelles developed might be a potential nano-drug delivery system for cancer chemotherapy. These results demonstrated that piperine-loaded Soluplus®/TPGS mixed micelles are an effective strategy to deliver piperine for cancer therapy.  相似文献   

2.
Abstract

Ternary mixed micelles constituted of Soluplus®, sodium cholate, and phospholipid were prepared as nano-delivery system of the anticancer drug, docetaxel. The formulation of docetaxel-loaded ternary mixed micelles (DTX-TMMs) with an optimized composition (Soluplus®/sodium cholate/phospholipid= 3:2:1 by weight) were obtained. The main particle size of DTX-TMMs was 76.36?±?2.45?nm, polydispersity index (PDI) was 0.138?±?0.039, and the zeta potential was ?8.46?±?0.55?mv. The encapsulation efficiency was 94.24?±?4.30% and the drug loading was 1.25%. The critical micelle concentration value was used to assess the ability of carrier materials to form micelles. The results indicated that the addition of Soluplus® to sodium cholate-phospholipid mixed micelles could reduce the critical micelle concentration and improve the stability. In vitro release studies demonstrated that compared with DTX-Injection group, the DTX-TMMs presented a controlled release property of drugs. In vivo pharmacodynamics results suggested that DTX-TMMs had the most effective inhibitory effect on tumor proliferation and had good biosafety. In addition, the relative bioavailability of mixed micelles was increased by 1.36 times compared with the DTX-Injection in vivo pharmacokinetic study indicated that a better therapeutic effect could be achieved. In summary, the ternary mixed micelles prepared in this study are considered to be promising anticancer drug delivery systems.  相似文献   

3.
Purpose: Metformin hydrochloride (MF) repurposing as adjuvant anticancer therapy for colorectal cancer (CRC) proved effective. Several studies attempted to develop MF-loaded nanoparticles (NPs), however the entrapment efficiency (EE%) was poor. Thus, the present study aimed at the facile development of a new series of chitosan (CS)-based semi-interpenetrating network (semi-IPN) NPs incorporating Pluronic® nanomicelles as nanocarriers for enhanced entrapment and sustained release of MF for efficient treatment of CRC.

Methods: The NPs were prepared by ionic gelation and subsequently characterized using FTIR, DSC, TEM, and DLS. A full factorial design was also adopted to study the effect of various formulation variables on EE%, particle size, and zeta-potential of NPs.

Results: NPs had a spherical shape and a mean particle size ranging between 135 and 220?nm. FTIR and DSC studies results were indicative of successful ionic gelation with the drug being dispersed in its amorphous form within CS-Pluronic® matrix. Maximum EE% reaching 57.00?±?12.90% was achieved using Pluronic®-123 based NPs. NPs exhibited a sustained release profile over 48?h. The MF-loaded NPs sensitized RKO CRC cells relative to drug alone.

Conclusion: The reported results highlighted the novel utility of the developed NPs in the arena of colon cancer treatment.  相似文献   

4.
The study was aimed toward development of modified release oral drug delivery system for highly water soluble drug, Milnacipran HCl (MH). Novel Tablet in Tablet system (TITs) comprising immediate and extended release dose of MH in different parts was fabricated. The outer shell was composed of admixture of MH, lactose and novel herbal disintegrant obtained from seeds of Lepidium sativum. In the inner core, MH was matrixed with blend of hydrophilic (Benecel®) and hydrophobic (Compritol®) polymers. 32 full factorial design and an artificial neuron network (ANN) were employed for correlating effect of independent variables on dependent variables. The TITs were characterized for pharmacopoeial specifications, in vitro drug release, SEM, drug release kinetics and FTIR study. The release pattern of MH from batch A10 containing 25.17% w/w Benecel® and 8.21% w/w of Compritol® exhibited drug release pattern close proximal to the ideal theoretical profile (t50% = 5.92?h, t75% = 11.9?h, t90% = 18.11 h). The phenomenon of drug release was further explained by concept of percolation and the role of Benecel® and Compritol® in drug release retardation was studied. The normalized error obtained from ANN was less, compared with the multiple regression analysis, and exhibits the higher accuracy in prediction. The results of short-term stability study revealed stable chataracteristics of TITs. SEM study of TITs at different dissolution time points confirmed both diffusion and erosion mechanisms to be operative during drug release from the batch A10. Novel TITs can be a succesful once a day delivery system for highly water soluble drugs.  相似文献   

5.
Phenytoin (PHT) is an antiepileptic drug that was reported to exhibit high wound healing activity. Nevertheless, its limited solubility, bioavailability, and inefficient distribution during topical administration limit its use. Therefore, this study aims to develop, characterize nanostructured lipid carriers (NLCs), and evaluate their potential in topical delivery of PHT to improve the drug entrapment efficiency and sustained release. The NLCs were prepared by hot homogenization followed by ultra sonication method using 23 factorial design. NLC formulations were characterized regarding their particle size (PS), zeta potential (ZP), entrapment efficiency percent (%EE), surface morphology, physicochemical stability, and in vitro release studies. The optimized NLC (F7) was further incorporated in 1%w/v carbopol gel and then characterized for appearance, pH, viscosity, stability, and in vitro drug release. The prepared NLCs were spherical in shape and possessed an average PS of 121.4–258.2?nm, ZP of (?15.4)–(–32.2)?mV, and 55.24–88.80 %EE. Solid-state characterization revealed that the drug is dispersed in an amorphous state with hydrogen bond interaction between the drug and the NLC components. NLC formulations were found to be stable at 25?°C for six months. The stored F7-hydrogel showed insignificant changes in viscosity and drug content (p>.05) up to six?months at 25?°C that pave a way for industrial fabrication of efficient PHT products. In vitro release studies showed a sustained release from NLC up to 48?h at pH 7.4 following non-Fickian Higuchi kinetics model. These promising findings encourage the potential use of phenytoin loaded lipid nanoparticles for future topical application.  相似文献   

6.
Genistein (GEN), is a natural dietary isoflavone, has been reported to show anticancer activities. However, its poor aqueous solubility and oral bioavailability limit its clinical application. We designed a novel genistein-loaded mixed micelles (GEN-M) system composed of Soluplus® and Vitamin E d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) were prepared by organic solvent evaporation aimed to overcome the challenges of GEN’s poor solubility and then further improve its oral bioavailability. The optimized, spherical-shaped GEN-M was obtained at a ratio of 10:1 (Soluplus®:TPGS). The mean particle size of GEN-M was 184.7?±?2.8?nm, with a narrow polydispersity index (PDI) of 0.162?±?0.002. The zeta potential value of GEN-M was ?2.92?±?0.01?mV. The micelles solutions was transparent with blue opalescence has high the entrapment efficiency (EE) and drug loading (DL) of 97.12?±?2.11 and 3.87?±?1.26%, respectively. GEN-M was demonstrated a sustained release behavior when formed micelles shown in drug release in vitro. The solubility of GEN in water increased to 1.53?±?0.04?mg/mL after encapsulation. The permeability of GEN across a Caco-2 cell monolayer was enhanced, and the pharmacokinetics study of GEN-M showed a 2.42-fold increase in relative oral bioavailability compared with free GEN. Based on these findings, we conclude that this novel nanomicelles drug delivery system could be leveraged to deliver GEN and other hydrophobic drugs.  相似文献   

7.
Objective: Novel antibiotic Ramizol® is advancing to clinical trials for the treatment of gastrointestinal Clostridium difficile associated disease. Despite this, previous studies have shown a rapid plasma clearance upon intravenous administration and low oral bioavailability indicating pure drug is unsuitable for systemic infection treatment following oral dosing. The current study aims to investigate the development of poly-lactic-(co-glycolic) acid (PLGA) particles to overcome this limitation and increase the systemic half-life following subcutaneous and intramuscular dosing.

Significance: The development of new antibiotic treatments will help in combatting the rising incidence of antimicrobial resistance.

Methods: Ramizol® was encapsulated into PLGA nano and microparticles using nanoprecipitation and emulsification solvent evaporation techniques. Formulations were analyzed for particle size, loading level and encapsulation efficiency as well as in vitro drug release profiles. Final formulation was advanced to in vivo pharmacokinetic studies in Sprague–Dawley rats.

Results: Formulation technique showed major influence on particle size and loading levels with optimal loading of 9.4% and encapsulation efficiency of 92.06%, observed using emulsification solvent evaporation. Differences in formulation technique were also linked with subsequent differences in release profiles. Pharmacokinetic studies in Sprague–Dawley rats confirmed extended absorption and enhanced bioavailability following subcutaneous and intramuscular dosing with up to an 8-fold increase in Tmax and T1/2 when compared to the oral and IV routes.

Conclusions: Subcutaneous and intramuscular dosing of PLGA particles successfully increased systemic half-life and bioavailability of Ramizol®. This formulation will allow further development of Ramizol® for systemic infection eradication.  相似文献   


8.
Abstract

The present study involved the design and development of oral bioadhesive pellets of eplerenone. A solid dispersion of eplerenone was developed with a hydrophilic carrier, polyvinyl caprolactam–polyvinyl acetate–polyethylene glycol graft copolymer (Soluplus®). Bioadhesive pellets were prepared from this solid dispersion using a combination of HPMC K4M and Carbopol 934P. Both the solid dispersion and the pellets were evaluated for various physicochemical properties such as solubility, entrapment efficiency, drug content, surface morphology, mucoadhesion and swelling behavior. Analysis carried out using FT-IR, DSC and XRD found no interaction between the eplerenone and excipients. The solid dispersion had irregular-shaped smooth-surfaced particles of diameter 265?±?105.5?μm. In TEM analysis, eplerenone particles of size 79–120?nm were found. The solubility and dissolution of eplerenone in the Soluplus®-based solid dispersion were 5.26 and 2.50 times greater, respectively. Investigation of the swelling behavior of the pellets showed that the thickness of the gel layer increased continuously over the duration of the study. Moreover, a correlation was observed between the thickness and strength of the gel layer and the percentage release. The mechanism of drug release was found to be non-Fickian (anomalous), with the release kinetics approaching first-order kinetics. The bioavailability of the eplerenone bioadhesive pellet formulation was studied using Wistar rats and was found to be improved. An in vivo mucoadhesion study showed that the pellets are retained for 24?h in rabbits. It was concluded that Soluplus® had a positive effect on the solubility and dissolution of pellets without affecting the bioadhesion.  相似文献   

9.
Objective: Curcumin being used to treat various chronic diseases while its poor bioavailability issue limited its wide clinical application as a therapeutic agent. The aim of this work was to prepare curcumin-loaded self-assembled micelles using soluplus and solutol®HS15 (SSCMs) to enhance curcumin’s solubility and thus oral bioavailability.

Methods: Optimum formulation was investigated and the optimized ratio of drugs and excipients was obtained and the SSCMs were prepared via ethanol solvent evaporation method. The optimal SSCMs were characterized by transmission electron microscopy, drug content analysis including loading efficiency (LE%) and entrapment efficiency (EE%), and the cumulative amount of curcumin released from the micelles were all calculated using HPLC method. The in vitro cytotoxicity and the permeability of SSCMs were measured by Caco-2 cell monolayers and the oral bioavailability was evaluated by SD rats.

Key findings: The solubility of curcumin in self-assembled micelles was dramatically increased by 4200 times as compared to free curcumin. Caco-2 cells transport experiment exhibited that while soluplus and solutol®HS15 were self-assembled into micelles, it could not only promote the permeability of curcumin across membrane for better absorption, but also could restrain the curcumin pumped outside due to the role of P-gp efflux mechanism of soluplus and solutol®HS15. Furthermore, the prepared SSCMs formulation was almost nontoxic and had safety performance on Caco-2 cells model. Moreover, curcumin’s oral bioavailability of SSCMs formulation in SD rats had doubled than that of free curcumin.

Conclusions: The prepared SSCMs were characterized by PS, PDI, LE%, EE% data analysis. After the soluplus and solutol®HS15 were self assembled into micelles, both the solubility and membrane permeability of curcumin were evaluated to have been enhanced, as well as the effect of efflux pump of curcumin was inhibited, hence to promote oral absorption and generate an increased bioavailability.  相似文献   


10.
Nifedipine (NFD) has been used for the treatment of cutaneous lesions caused by peripheral vascular disease and diabetic ulcers. NFD was formulated at 8% in three semi-solid formulations: Polaxamer 407 Lecithin Organogel (PLO), PLO plus Transcutol®, and an oil-in-water (o/w) emulsion. In vitro release and permeation tests were carried out using a synthetic (cellulose acetate) or natural membrane (pig ear skin), respectively, mounted in a Franz-type diffusion cell at 37°C in a constant water bath. As a receptor solution, isotonic phosphate buffer at pH 7.4 was used. All samples were analyzed by high-performance liquid chromatography by employing a previously validated method. The drug flow values were 6.126?±?0.288, 4.030?±?0.081, and 6.660?±?0.254 μg/cm2/h for PLO, PLO plus Transcutol®, and o/w emulsion, respectively. The three formulations did not show significant differences in drug flow, considering p > 0.05. Furthermore, their penetration profiles in both the epidermis and dermis were statistically different. Thus, the incorporation of NFD in PLO, PLO plus Transcutol®, and o/w emulsion changed the drug thermodynamic activity, as expected. In addition, Transcutol® increased the solubility of NFD in the formulation and promoted its penetration in both the epidermis and dermis.  相似文献   

11.
Background: Drug release from a solid form of self-emulsifying drug delivery system (SEDDS) has greatly been limited due to strong adsorption and physical interaction with carriers. To facilitate drug release process in the stomach, an acid-soluble powderizing carrier, Fujicalin® was evaluated together with different disintegrants and hydrophilic lubricants. Method: Immediate-release self-emulsifying tablets (IR-SETs) of ibuprofen (IBU) was prepared with solidified SEDDS of IBU, various disintegrants, and lubricants, and drug release was evaluated to develop IR-SET that can release IBU with a similar IBU release rate to that obtained with liquid SEDDS. Results: The liquid SEDDS consisted of Capryol 90, Cremophor EL, Labrasol, and IBU at a ratio of 3:4:3:3, and was solidified with various adsorbents. The powderized SEDDS was tabletted by a direct compression. Fujicalin®-based SEDDS tablets demonstrated remarkably higher dissolution rate of IBU compared with Neusilin® and Neosyl®-based SEDDS tablets. The IR-SET formula of IBU prepared with Fujicalin® as an adsorbent, Polyplasdone® as a disintegrant, and sodium bicarbonate as a co-disintegrant showed over 90% of initially loaded dose of IBU released within 5?min in a stimulated gastric juice (pH 1.2), exhibiting almost equivalent rate of IBU release to that shown by liquid SEDDS. The particle size analysis revealed no significant differences in droplet sizes of the microemulsions formed from liquid (116?nm) and IR-SET (110?nm). Conclusion: The novel IR-SET can be promising as a fast-releasing SEDDS tablet of IBU for fast onset of action.  相似文献   

12.
The asphalt industry is constantly attempting to reduce its emissions as concerns are growing on global warming. This is done by decreasing the mixing and compaction temperatures of asphalt mixtures without affecting the properties of the mix which is possible through numerous available technologies in the industry. The production of asphalt mix is done by warm mix asphalt (WMA) technology at considerably lower temperatures (120°C or lower). Less energy consumption, lower mixing and compaction temperatures, early site opening, reduced ageing, fewer emissions, cool weather paving, better workability and, finally, an extended paving window could be mentioned as some of the benefits obtained by using the WMA. This paper presents the WMA techniques and technologies such as foaming techniques, wax and chemical additives techniques. Additionally, the performance of WMA popular technologies such as Sasobit®, WAM®-Foam, Evotherm®, Low energy asphalt, Rediset® WMX and REVIX? are fully described.  相似文献   

13.
Growing evidence suggest that Alzheimer’s disease (AD), the most common cause of dementia among the elderly is a metabolic disorder associated with impaired brain insulin signaling. Hence, the diabetic drug can be a therapeutic option for the management AD. The researches in this area are ongoing and Pioglitazone (PIO) is one of the most investigated diabetic drug in AD. Eventhough PIO treatment was found to improve AD significantly in the preclinical models, the poor blood-brain barrier (BBB) permeability and serious peripheral side effects limited its success in the clinical trials. The objective of the present study was to formulate and optimize intranasal (IN) nano lipid carriers (NLC) of PIO for its targeted delivery to the brain. A Box-Behnken design was employed to optimize the effect of three independent variables on two dependent variables. The optimized formulation had a particle size (PS) of 211.4?±?3.54?nm and zeta potential of (ZP) of 14.9?±?1.09?mv. The polydispersibility index (PDI) and entrapment efficiency (EE) was found to be 0.257?±?0.108 and 70.18?±?4.5% respectively. Storage stability studies performed has confirmed the stability of NLCs at 4?°C and 25?°C. The in-vitro drug release study has exhibited a sustained release of drug from the NLC. The formulation was observed to improve the nasal permeability of PIO ex-vivo significantly. Toxicity studies were performed to confirm the safety of formulation for the in-vivo administration. In-vivo biodistribution study in rats has shown a direct transport of drug from the nose to brain from the IN-NLC.  相似文献   

14.
Context: The liquisolid technology is a promising technique for the release enhancement of poorly soluble drugs. With this approach, liquids such as solutions or suspensions of poorly soluble drugs in a non-volatile liquid vehicle are transformed into acceptably flowing and compressible powders. As fast-release liquisolid compacts require a high amount of liquid vehicle, more effective tableting excipients for liquid adsorption are needed to reduce tablet weight.

Objective: The aim of this study was to investigate the suitability of various novel tableting excipients as carrier and coating materials for liquisolid compacts.

Materials and methods: Liquisolid compacts containing the liquid drug tocopherol acetate (TA) as model drug and various excipients were prepared. The effect of liquid drug content on the flowability and tabletability of the liquisolid powder blends as well as the disintegration of the liquisolid compacts was studied. From this data, the maximum liquid adsorption capacity of the respective mixtures of carrier and coating materials could be determined.

Results and discussion: The liquid adsorption capacity depends on the specific surface area of the investigated excipients. Fujicalin® and especially Neusilin® are more effective carrier materials for liquid adsorption than Avicel®, which is often used for liquisolid systems. Moreover, Florite® and Neusilin® turned out to be more suitable as coating materials than the commonly used Aerosil® due to their better tableting properties.

Conclusion: If Neusilin® is used as carrier and coating material instead of Avicel® (carrier material) and Aerosil® (coating material), the TA adsorption capacity is increased by a factor of 7.  相似文献   

15.
The influence of plasticizer level, roll pressure and sintering temperature was investigated on the granule properties, tablet breaking force and theophylline release from tablets. Nine formulations using theophylline as a model drug, Eudragit® RL PO, Eudragit® RS PO, or both as a matrix former and triethyl citrate (TEC) as a plasticizer were prepared. The formulations were roller compacted and the granules obtained were evaluated for particle size distribution and flowability. These granules were compacted into tablets at a compression force of 7?kN. The tablets were thermally treated at different temperatures (50 and 75°C) for 5?h and were evaluated for breaking force and dissolution. Increase in roll pressure and TEC levels resulted in a progressive increase in the mean particle size of the granules. The flowability of the granules also improved with increasing roll pressures and TEC levels. Tablet breaking force increased with an increase in TEC levels and sintering temperatures. But these effects were significant only at the highest level of plasticizer and sintering temperature respectively. For the tablets containing Eudragit® RS PO, theophylline release decreased proportionately with increase in TEC levels and sintering temperatures. Tablets containing either Eudragit® RL PO or a mixture of RS PO and RL PO failed to impart an extended-release property to the tablets at the studied variables i.e. roll pressure, TEC levels and sintering temperature. It was clearly demonstrated that with suitable optimization of these parameters, the release-rate of a water soluble drug from the matrix tablets prepared via roller compaction can be finely controlled.  相似文献   

16.
Hot melt extrusion has been used to produce a solid dispersion of the thermolabile drug artemisinin. Formulation and process conditions were optimized prior to evaluation of dissolution and biopharmaceutical performance. Soluplus®, a low Tg amphiphilic polymer especially designed for solid dispersions enabled melt extrusion at 110?°C although some drug-polymer incompatibility was observed. Addition of 5% citric acid as a pH modifier was found to suppress the degradation. The area under plasma concentration time curve (AUC0–24h) and peak plasma concentration (Cmax) were four times higher for the modified solid dispersion compared to that of pure artemisinin.  相似文献   

17.
Warm mix asphalt (WMA) is a relatively new and emerging technology for the asphalt industry. It offers potential construction and environmental advantages over traditional hot mix asphalt (HMA). However, WMA must perform at least as well as HMA before it can be used extensively. This study evaluates the performance of WMA mixtures and their corresponding HMA control mixtures obtained from various field sites in the state of Washington. Four WMA technologies are examined, including Sasobit® and three water-foaming technologies, Gencor®, Aquablack? and ALmix Water Injection. Performance tests are conducted on the field cores to evaluate and compare the rutting, moisture susceptibility, fatigue and thermal resistance of WMA and HMA, respectively. Also, the extracted binders from the field cores are evaluated. In addition, the early-age field performance of WMA and HMA control pavements are compared.  相似文献   

18.
Objective: The aims of this study were to formulate simvastatin (SV)-loaded self-microemulsifying drug delivery systems (SMEDDS), and explore the potential of these drug delivery systems to improve SV solubility, and also to identify the optimal place in the gastrointestinal (GI) tract for the release of SV using coupled in vitro/in silico approach.

Significance: In comparison to other published results, this study considered the extensive pre-systemic clearance of SV, which could significantly decrease its systemic and hepatic bioavailability if SV is delivered into the small intestine.

Methods: SV-loaded SMEDDS were formulated using various proportions of oils (PEG 300 oleic glycerides, propylene glycol monocaprylate, propylene glycol monolaurate), surfactant (PEG 400 caprylic/capric glycerides) and cosurfactant (polysorbate 80) and subjected to characterization, and physiologically-based pharmacokinetic (PBPK) modeling.

Results: According to the in vitro results, the selected SMEDDS consisted of 10.0% PEG 300 oleic glycerides, 67.5% PEG 400 caprylic/capric glycerides, and 22.5% polysorbate 80. The use of acid-resistant capsules filled with SV-loaded SMEDDS was found helpful in protecting the drug against early degradation in proximal parts of the GI tract, however, in silico simulations indicated that pH-controlled drug release system that dissolve in the distal parts of the intestine might further improve SV bioavailability (up to 7.20%).

Conclusion: The obtained results suggested that combined strategy for the improvement of SV bioavailability should comprise solubility enhancement and delayed drug release. The developed SV-specific PBPK model could potentially be used to assess the influence of formulation factors on drug absorption and disposition when developing SV oral dosage forms.  相似文献   


19.
The aim of this study was to prepare fast-disintegrating tablets (FDTs) of diclofenac potassium with sufficient integrity as well as a pleasant taste, using two different fillers and binders: Tablettose 70® and Di-Pac®. Tablets were made with direct compression method. Tablet properties such as porosity, hardness, and disintegration time were determined. Diclofenac potassium determinations were carried out using a validated spectrophotometric method for the analysis of drug. Furthermore, in vivo experiments were carried out to compare the analgesic effect and the time to relieve migraine headache between the commercial tablets and FDTs of diclofenac potassium against placebo. Results showed that FDTs of diclofenac potassium with durable structure and desirable taste can be prepared using both fillers and binders but tablets prepared with Di-Pac had a better taste so the tablet formulation containing Di-Pac was chosen for in vivo experiments. Placebo controlled in vivo trial demonstrated that 50 mg diclofenac potassium, administered as a single dose of FDTs or commercial tablets, was effective in relieving the pain and both of them were superior to placebo.  相似文献   

20.
Background: Dioscin has shown cytotoxicity against cancer cells, but its poor solubility and stability have limited its clinical application. In this study, we designed mixed micelles composed of TPGS and Soluplus® copolymers entrapping the poorly soluble anticancer drug dioscin.

Method: In order to improve the aqueous solubility and bioactivity of dioscin, TPGS/Soluplus® mixed micelles with an optimal ratio were prepared using a thin-film hydration method, and their physicochemical properties were characterized. Cellular cytotoxicity and uptake of the dioscin-loaded TPGS/Soluplus® mixed micelles were studied in MCF-7 breast cancer cells and A2780s ovarian cancer cells. The pharmacokinetics of free dioscin and dioscin-loaded TPGS/Soluplus® mixed micelles was studied in vivo in male Sprague-Dawley rats via a single intravenous injection in the tail vein.

Results: The average size of the optimized mixed micelle was 67.15?nm, with 92.59% drug encapsulation efficiency and 4.63% drug loading efficiency. The in vitro release profile showed that the mixed micelles presented sustained release behavior compared to the anhydrous ethanol solution of dioscin. In vitro cytotoxicity assays were conducted on human cancer cell lines including A2780s ovarian cancer cells and MCF-7 breast cancer cells. The mixed micelles exhibited better antitumor activity compared to free dioscin against all cell lines, which may benefit from the significant increase in the cellular uptake of dioscin from mixed micelles compared to free dioscin. The pharmacokinetic study showed that the mixed micelle formulation achieved a 1.3 times longer mean residual time (MRT) in circulation and a 2.16 times larger area under the plasma concentration–time curve (AUC) than the free dioscin solution.

Conclusion: Our results suggest that the dioscin-loaded mixed micelles developed in this study might be a potential nano drug-delivery system for cancer chemotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号