首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Curcumin is an active ingredient which is poorly water-soluble, leading to a low oral bioavailability. The aim of this research was to prepare a novel microbead formulation, and to solubilize, solidify, and improve storage stability of curcumin. Firstly, curcumin was solubilized with KolliphorTM RH40 and then microencapsulated by cross linking of sodium alginate with calcium chloride. A three-factor, three-level Box–Behnken design was employed to acquire the optimum microbead formulation, namely the best entrapment efficiency and in vitro curcumin release. The independent variables were sodium alginate concentration, calcium chloride concentration, and the weight of curcumin solution, while the dependent variables were entrapment efficiency and in vitro curcumin release. The optimized microbead formulation was 2.06% sodium alginate, 24.33% calcium chloride, and 1.28 g curcumin solution (containing curcumin and RH40 with a ratio of 1:22, g/g). Results showed that high concentrations of sodium alginate and calcium chloride could increase the entrapment efficiency. In vitro curcumin release decreased with increasing of sodium alginate as well as decreasing of calcium chloride. In conclusion, the optimum microbead formulation increased the solubility of curcumin and enhanced its stability, and achieved a high entrapment efficiency and in vitro curcumin release.  相似文献   

2.
ABSTRACT

A floating granular delivery system consisting of calcium silicate (CS) as porous carrier; repaglinide (Rg), an oral hypoglycemic agent; and hydroxypropyl methylcellulose K4M (HPMC K4M), ethyl cellulose (EC) and carbopol 940 (CP940) as matrix forming polymers was prepared and evaluated for its gastro-retentive and controlled release properties. The effect of various formulation and process variables on the particle morphology, micromeritic properties, in vitro floating behavior, drug content (%) and in vitro drug release was studied. The transit of floating granules of optimized formulation in the gastrointestinal (GI) tract was monitored by gamma scintigraphy in albino rabbits. The optimized formulation was compared in vivo with lactose granules (RgSCLG) prepared from identical polymers with their optimized composition ratio. Repaglinide-loaded optimized formulation was orally administered to albino rabbits and blood samples collected were used to determine pharmacokinetic parameters of Rg from floating granular formulation. Results were compared with pharmacokinetic parameters of marketed tablet formulation of Rg. The optimized formulation (RgSCG4) demonstrated favorable in vitro floating and release characteristics. Prolonged gastric residence time (GRT) of over 6 hr was achieved in all subjects for calcium silicate based floating granules of Rg. The relative bioavailability of Rg-loaded floating granules increased 3.8-fold in comparison to that of its marketed capsule. The designed system, combining excellent buoyant ability and suitable drug release pattern, offered clear advantages in terms of increased bioavailability of repaglinide.  相似文献   

3.
Abstract

Ternary mixed micelles constituted of Soluplus®, sodium cholate, and phospholipid were prepared as nano-delivery system of the anticancer drug, docetaxel. The formulation of docetaxel-loaded ternary mixed micelles (DTX-TMMs) with an optimized composition (Soluplus®/sodium cholate/phospholipid= 3:2:1 by weight) were obtained. The main particle size of DTX-TMMs was 76.36?±?2.45?nm, polydispersity index (PDI) was 0.138?±?0.039, and the zeta potential was ?8.46?±?0.55?mv. The encapsulation efficiency was 94.24?±?4.30% and the drug loading was 1.25%. The critical micelle concentration value was used to assess the ability of carrier materials to form micelles. The results indicated that the addition of Soluplus® to sodium cholate-phospholipid mixed micelles could reduce the critical micelle concentration and improve the stability. In vitro release studies demonstrated that compared with DTX-Injection group, the DTX-TMMs presented a controlled release property of drugs. In vivo pharmacodynamics results suggested that DTX-TMMs had the most effective inhibitory effect on tumor proliferation and had good biosafety. In addition, the relative bioavailability of mixed micelles was increased by 1.36 times compared with the DTX-Injection in vivo pharmacokinetic study indicated that a better therapeutic effect could be achieved. In summary, the ternary mixed micelles prepared in this study are considered to be promising anticancer drug delivery systems.  相似文献   

4.
Tumor targeting pharmaceuticals will play a crucial role in future pharma pipelines. The targeted thorium conjugate (TTC) therapeutic platform could provide real benefit to patients, whereby targeting moieties like monoclonal antibodies are radiolabelled with the alpha-emitting radionuclide thorium-227 (227Th, t1/2?=?18.7?days). A potential problem could be the accumulation of the long-lived daughter nuclide radium-223 (223Ra, t1/2?=?11.4?days) in the drug product during manufacturing and distribution. Therefore, the level of 223Ra must be standardized before administration to the patient. The focus in this study has been the removal of 223Ra, as the other progenies will have a very limited stay in the formulation. In this study, the purification of TTCs labeled with decayed 227Th has been explored. Columns packed with a strong cation exchange resin have been used to sequester 223Ra. The separation of TTC from 223Ra has been evaluated as influenced by both formulation and process parameters with a design of experiments (DOE) study; including citrate or acetate buffer, pH, buffer concentration, presence or absence of pABA?+?EDTA, resin amount and sodium chloride concentration. The aim was to achieve a separation with high sorption of 223Ra and accompanying low TTC sorption. The results were analyzed by multivariate analysis. Four regression models of TTC and 223Ra sorption from citrate and acetate buffered formulations were developed. The predictive accuracy of sorption in the four statistical models was given by standard deviations and confidence intervals. The TTC sorption in citrate and acetate buffered formulations was affected by the identical variables and the variation in TTC sorption was comparable for the two models. However, the DOE variables had a significantly stronger impact on the 223Ra sorption in citrate buffered formulations than the 223Ra sorption in acetate buffer. An optimal separation with a TTC sorption below 25% and 223Ra sorption above 90% can be achieved in both citrate and acetate buffered formulations. Stability studies of radiochemical purity (RCP) indicated that the measured 227Th values may be partly due to free 227Th and not TTC, but the results indicate that TTC stability may be controlled by optimizing formulation parameters. Hence, the sorption data and the regression models presented must be reviewed and further explored with regard to what is known about the stability of the TTC in the different buffered formulations.  相似文献   

5.
A floating granular delivery system consisting of calcium silicate (CS) as porous carrier; repaglinide (Rg), an oral hypoglycemic agent; and hydroxypropyl methylcellulose K4M (HPMC K4M), ethyl cellulose (EC) and carbopol 940 (CP940) as matrix forming polymers was prepared and evaluated for its gastro-retentive and controlled release properties. The effect of various formulation and process variables on the particle morphology, micromeritic properties, in vitro floating behavior, drug content (%) and in vitro drug release was studied. The transit of floating granules of optimized formulation in the gastrointestinal (GI) tract was monitored by gamma scintigraphy in albino rabbits. The optimized formulation was compared in vivo with lactose granules (RgSCLG) prepared from identical polymers with their optimized composition ratio. Repaglinide-loaded optimized formulation was orally administered to albino rabbits and blood samples collected were used to determine pharmacokinetic parameters of Rg from floating granular formulation. Results were compared with pharmacokinetic parameters of marketed tablet formulation of Rg. The optimized formulation (RgSCG4) demonstrated favorable in vitro floating and release characteristics. Prolonged gastric residence time (GRT) of over 6 hr was achieved in all subjects for calcium silicate based floating granules of Rg. The relative bioavailability of Rg-loaded floating granules increased 3.8-fold in comparison to that of its marketed capsule. The designed system, combining excellent buoyant ability and suitable drug release pattern, offered clear advantages in terms of increased bioavailability of repaglinide.  相似文献   

6.
A novel coated gastric floating drug-delivery system (GFDDS) of bergenin (BN) and cetirizine dihydrochloride (CET) was developed. First, the pharmacodynamic studies were performed and the results revealed that the new compounds of bergenin/cetirizine dihydrochloride had comparative efficacy as commercial products (bergenin/chlorphenamine maleate) but with fewer side effects on central nervous system (CNS). Subsequently, bergenin was formulated as an extended-release core tablet while cetirizine dihydrochloride was incorporated into the gastric coating film for immediate release. The formulation of GFDDS was optimized by CET content uniformity test, in vitro buoyancy and drug release. Herein, the effects of sodium bicarbonate (effervescent), hydroxypropyl methylcellulose (HPMC, matrix polymer) and coating weight gain were investigated respectively. The optimized GFDDS exhibited good floating properties (buoyancy lag time < 2?min; floating duration > 10?h) and satisfactory drug-release profiles (immediate release of CET in 10?min and sustained release of BN for 12?h). In vivo gamma scintigraphy proved that the optimized GFDDS could retain in the stomach with a prolonged gastric retention time (GRT) of 5?h, and the coating layer showed no side effect for gastric retention. The novel coated gastric floating drug-delivery system offers a new approach to enhance BN's absorption at its absorption site and the efficacy of both CET and BN.  相似文献   

7.
The aim of the present work was to prepare floating microspheres of atenolol as prolonged release multiparticulate system and evaluate it using novel multi-compartment dissolution apparatus. Atenolol loaded floating microspheres were prepared by emulsion solvent evaporation method using 32 full factorial design. Formulations F1 to F9 were prepared using two independent variables (polymer ratio and % polyvinyl alcohol) and evaluated for dependent variables (particle size, percentage drug entrapment efficiency and percentage buoyancy). The formulation(F8) with particle size of 329?±?2.69 µm, percentage entrapment efficiency of 61.33% and percentage buoyancy of 96.33% for 12?h was the of optimized formulation (F8). The results of factorial design revealed that the independent variables significantly affected the particle size, percentage drug entrapment efficiency and percentage buoyancy of the microspheres. In vitro drug release study revealed zero order release from F8 (98.33% in 12?h). SEM revealed the hollow cavity and smooth surface of the hollow microspheres.  相似文献   

8.
A novel coated gastric floating drug-delivery system (GFDDS) of bergenin (BN) and cetirizine dihydrochloride (CET) was developed. First, the pharmacodynamic studies were performed and the results revealed that the new compounds of bergenin/cetirizine dihydrochloride had comparative efficacy as commercial products (bergenin/chlorphenamine maleate) but with fewer side effects on central nervous system (CNS). Subsequently, bergenin was formulated as an extended-release core tablet while cetirizine dihydrochloride was incorporated into the gastric coating film for immediate release. The formulation of GFDDS was optimized by CET content uniformity test, in vitro buoyancy and drug release. Herein, the effects of sodium bicarbonate (effervescent), hydroxypropyl methylcellulose (HPMC, matrix polymer) and coating weight gain were investigated respectively. The optimized GFDDS exhibited good floating properties (buoyancy lag time < 2?min; floating duration > 10?h) and satisfactory drug-release profiles (immediate release of CET in 10?min and sustained release of BN for 12?h). In vivo gamma scintigraphy proved that the optimized GFDDS could retain in the stomach with a prolonged gastric retention time (GRT) of 5?h, and the coating layer showed no side effect for gastric retention. The novel coated gastric floating drug-delivery system offers a new approach to enhance BN’s absorption at its absorption site and the efficacy of both CET and BN.  相似文献   

9.
The purpose of the present investigation was to develop solid lipid nanoparticles (SLNs) of simvastatin in order to enhance its oral bioavailability by minimizing its first-pass metabolism. To achieve our goal, SLNs were prepared by solvent injection technique and optimized by 23 full factorial experimental design using Design Expert software. The SLN formulations were optimized for amount of compritol, concentration of poloxamer, and volume of acetone in order to achieve desired responses of particle size, entrapment efficiency (EE), and cumulative drug release (CDR). Response surface plots were constructed to study the influence of each variable on each response and the interactions between any two variables were also analyzed. Formulation F10 with particle size of 271.18?nm, % EE of 68.16% and % CDR of 76.23%, and highest desirability value of 0.645 was selected as optimized formulation. The optimized formulation was evaluated for biodistribution and pharmacokinetics by technetium-99m (Tc-99m) radiolabeling technique in mice. The relative bioavailability of simvastatin from optimized SLNs was found to be 220%, substantiating the protective action of SLNs against liver metabolism. However, though the drug initially bypassed the liver metabolism, simvastatin continuously entered in liver to exert its therapeutic action that was evidenced by biodistribution study.  相似文献   

10.
The aim of this study was to calculate a reasonable correction factor that could be corrected when the sensitivity of each gamma camera is measured and a whole body bone scan is performed as a follow-up examination. Seven pieces of equipment were used to analyse the sensitivity measurements of each gamma camera based on the source sensitivity measurement method recommended by the IAEA. These were BRIGHTVIEW, PRECEDENCE, ECAM, ECAM signature, ECAM Plus, SYMBIA T2 and INFINIA. The 99mTc line source for the sensitivity measurement was generated in 4–7 kcps, which are the common values in a whole body bone scan. All the cameras were equipped with a low-energy and high-resolution parallel multi-hole collimator and set at a window width and photo peak of 15% and 140 keV, respectively. After placing the 99mTc source as closely as possible to the collimator, the count was measured for 60 and 120 seconds to calculate correction factor. To determine if the correction factor calculated using the 99mTc line source could be applied to a whole body bone scan of a real patient, a whole body bone scan was performed on 27 patients before applying the correction factor for comparative analysis. According to the experimental results using the 99mTc line source, the gamma camera sensitivity was the highest for ECAM plus, followed in order by the gamma cameras, ECAM signature, SYMBIA T2, ECAM, BRIGHTVIEW, INFINIA and PRECEDENCE. When the results were used to calculate the correction factor based on the ECAM gamma camera, which had a medium-degree of sensitivity, the respective correction factors were 1·07, 1·05, 1·03, 1·00, 0·90, 0·83 and 0·72. The correction factors calculated based on the experiment using a 99mTc line source were similar to those calculated based on the whole body bone scan. Clinical application of correction factor for measured sensitivity enables estimation of factor correction depending on difference in equipment when image is read, which improves accuracy and reliability of examination, and is expected to be used especially for continuous follow-up examination.  相似文献   

11.
Objective: The purpose of this study is to develop a nanoemulsion formulation for its use as a transcutaneous vaccine delivery system.

Materials and methods: With bovine albumin-fluorescein isothiocyanate conjugate (FITC-BSA) as a vaccine model, formulations were selected with the construction of pseudo-ternary phase diagrams and a short-term stability study. The size of the emulsion droplets was furthered optimized with high-pressure homogenization. The optimized formulation was evaluated for its skin permeation efficiency. In vitro skin permeation studies were conducted with shaved BALB/c mice skin samples with a Franz diffusion cell system. Different drug concentrations were compared, and the effect of the nanoemulsion excipients on the permeation of the FITC-BSA was also studied.

Results: The optimum homogenization regime was determined to be five passes at 20?000?psi, with no evidence of protein degradation during processing. With these conditions, the particle diameter was 85.2?nm?±?15.5?nm with a polydispersity index of 0.186?±?0.026 and viscosity of 14.6 cP?±?1.2 cP. The optimized formulation proved stable for 1 year at 4?°C. In vitro skin diffusion studies show that the optimized formulation improves the permeation of FITC-BSA through skin with an enhancement ratio of 4.2 compared to a neat control solution. Finally, a comparison of the skin permeation of the nanoemulsion versus only the surfactant excipients resulted in a steady state flux of 23.44?μg/cm2/h for the nanoemulsion as opposed to 6.10?μg/cm2/h for the emulsifiers.

Conclusion: A novel nanoemulsion with optimized physical characteristics and superior skin permeation compared to control solution was manufactured. The formulation proposed in this study has the flexibility for the incorporation of a variety of active ingredients and warrants further development as a transcutaneous vaccine delivery vehicle.  相似文献   

12.
The objective of this study was to develop delivery systems for taste masking based on multiparticulates coated with Kollicoat® Smartseal 30D formulated as liquid oral suspensions. Coating of particles containing bitter drugs with Kollicoat® Smartseal reduced drug leaching into aqueous medium, especially when increasing pH, therefore can be used for the formulation of liquid dosage forms. Application of an intermediate layer of ion exchange resins between drug layer and coating can further decrease drug leaching into aqueous vehicle that is beneficial in terms of taste masking. Using optimized compositions of liquid vehicles such as addition of sugar alcohols and ion exchange resin, reconstitutable or ready-to-use liquid dosage forms with micropellets can be developed with bitter taste protection after redispersion lasting longer than 3?weeks, which exceeds the usual period of application.  相似文献   

13.
Targeted thorium conjugates are currently being investigated as a new class of alpha-radiopharmaceuticals. The natural decay of thorium-227 (227Th) results in the ingrowth of radium-223 (223Ra). Consideration must, therefore, be given to define acceptable limits of 223Ra in the drug product at the time of dose administration. By effective sequestration of 223Ra, we aim to improve the radiochemical purity and extend the effective user window of drug products containing 227Th. 223Ra is the first progeny of 227Th and the only one with a long half-life (days). We have, therefore, focused on the removal of this specific species since the progenies of 223Ra will have a very limited lifetime in the formulation once 223Ra is removed. In this study, we investigated a multitude of materials for their ability to reduce the 223Ra level by: (1) passive diffusion or (2) by cartridge filtration on gravity columns. In addition, we probe the compatibility of these materials in the presence of antibody trastuzumab to assess the level of protein binding and estimate the quenching of radiolysis by binding of radionuclides. A screening matrix of organic and inorganic materials was established, i.e. strontium and calcium alginate gel beads, distearoyl phosphatidylglycerol (DSPG) liposomes, ceramic hydroxyapatite, Zeolite UOP type 4A and cation exchange resins AG50W-X8 and SOURCE 30S. First, passive diffusional uptake of 223Ra by suspended materials present in the formulation was measured as a decrease in sample radioactivity after separation. Second, selected materials were packed on gravity columns in order to evaluate the efficiency of column separation versus diffusional adsorption. The retention of 223Ra and 227Th were characterized by measuring the radioactivity in the eluate and on the columns. Finally, the compatibility between trastuzumab, as a selected model antibody, and suspensions of the binding materials was analyzed during storage of the drug product in the presence of adsorbent. The formation of H2O2 was evaluated to measure the influence of radionuclide binding material on radiolysis in the formulation. All the materials bound 223Ra by passive diffusional uptake ranging from 31% to 95% with DSPG liposomes demonstrating superiority at 95% efficiency. All materials suitable for assessment by gravity column filtration bound 223Ra almost quantitatively (~100%) and with minimal variation (relative standard deviation <1%). The uptake was significantly higher compared to passive diffusional uptake. Alginate gel beads, ceramic hydroxyapatite and SOURCE 30S reduced the antibody concentration in solution to 40–50% while the Zeolite UOP type 4A, AG50W-X8 resin and DSPG liposomes showed?≤10% reduction of antibody concentration. Ceramic hydroxyapatite significantly reduced H2O2 formed by radionuclide initiated radiolysis.  相似文献   

14.
The present work aimed to develop and characterize sustained release cuboidal lipid polymeric nanoparticles (LPN) of rosuvastatin calcium (ROS) by solvent emulsification-evaporation process. A three factor, two level (23) full-factorial design was applied to study the effect of independent variables, i.e. amount of lipid, surfactant and polymer on dependent variables, i.e. percent entrapment efficiency and particle size. Optimized formulations were further studied for zeta potential, TEM, in vitro drug release and ex vivo intestinal permeability. Cuboidal nanoparticles exhibited average particle size 61.37?±?3.95?nm, entrapment efficiency 86.77?±?1.27% and zeta potential ?6.72?±?3.25?mV. Nanoparticles were lyophilized to improve physical stability and obtain free-flowing powder. Effect of type and concentration of cryoprotectant required to lyophilize nanoparticles was optimized using freeze-thaw cycles. Mannitol as cryoprotectant in concentration of 5-8% w/v was found to be optimal providing zeta potential ?20.4?±?4.63?mV. Lyophilized nanoparticles were characterized using FTIR, DSC, XRD and SEM. Absence of C=C and C–F aromatic stretch at 1548 and 1197?cm?1, respectively, in LPN indicated coating of drug by lipid and polymer. In vitro diffusion of ROS using dialysis bag showed pH-independent sustained release of ROS from LPN in comparison to drug suspension. Intestinal permeability by non-everted gut sac model showed prolonged release of ROS from LPN owing to adhesion of polymer to mucus layer. In vivo absorption of ROS from LPN resulted in 3.95-fold increase in AUC0–last and 7.87-fold increase in mean residence time compared to drug suspension. Furthermore modified tyloxapol-induced rat model demonstrated the potential of ROS-loaded LPN in reducing elevated lipid profile.  相似文献   

15.
Genistein (GEN), is a natural dietary isoflavone, has been reported to show anticancer activities. However, its poor aqueous solubility and oral bioavailability limit its clinical application. We designed a novel genistein-loaded mixed micelles (GEN-M) system composed of Soluplus® and Vitamin E d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) were prepared by organic solvent evaporation aimed to overcome the challenges of GEN’s poor solubility and then further improve its oral bioavailability. The optimized, spherical-shaped GEN-M was obtained at a ratio of 10:1 (Soluplus®:TPGS). The mean particle size of GEN-M was 184.7?±?2.8?nm, with a narrow polydispersity index (PDI) of 0.162?±?0.002. The zeta potential value of GEN-M was ?2.92?±?0.01?mV. The micelles solutions was transparent with blue opalescence has high the entrapment efficiency (EE) and drug loading (DL) of 97.12?±?2.11 and 3.87?±?1.26%, respectively. GEN-M was demonstrated a sustained release behavior when formed micelles shown in drug release in vitro. The solubility of GEN in water increased to 1.53?±?0.04?mg/mL after encapsulation. The permeability of GEN across a Caco-2 cell monolayer was enhanced, and the pharmacokinetics study of GEN-M showed a 2.42-fold increase in relative oral bioavailability compared with free GEN. Based on these findings, we conclude that this novel nanomicelles drug delivery system could be leveraged to deliver GEN and other hydrophobic drugs.  相似文献   

16.
The present study was aimed to develop Annona muricata fruit extract loaded solid lipid nanoparticles (SLNs) and explore its cytotoxic potential in vitro model of breast cancers. Extract loaded SLNs were successfully prepared by high-pressure homogenization followed by ultrasonication method and optimized using 23 full factorial design. The extract loaded SLNs were characterized using different parameters such as particle size (PS), % entrapment efficiency (EE), zeta potential (ZP) and % cumulative drug release (CDR). The SLNs formulation was optimized on the basis of software analysis with an overall desirability factor. The PS and %EE of the optimized formulation were found to be 134.8?nm and 83.26%, respectively. The optimized formulation showed a CDR of 79.83% up to 48?h. In vitro cytotoxicity efficacy of extract loaded SLNs was determined using MTT and Apoptosis assay and compared to that of a free extract. The SLNs showed a notable apoptotic effect and better efficacy to kill MCF7 cancer cells as compared to free extract. Thus, extract loaded SLNs could be an alternative dosage form which possibly controls therapeutic action with reducing side effect.  相似文献   

17.
Nifedipine (NFD) has been used for the treatment of cutaneous lesions caused by peripheral vascular disease and diabetic ulcers. NFD was formulated at 8% in three semi-solid formulations: Polaxamer 407 Lecithin Organogel (PLO), PLO plus Transcutol®, and an oil-in-water (o/w) emulsion. In vitro release and permeation tests were carried out using a synthetic (cellulose acetate) or natural membrane (pig ear skin), respectively, mounted in a Franz-type diffusion cell at 37°C in a constant water bath. As a receptor solution, isotonic phosphate buffer at pH 7.4 was used. All samples were analyzed by high-performance liquid chromatography by employing a previously validated method. The drug flow values were 6.126?±?0.288, 4.030?±?0.081, and 6.660?±?0.254 μg/cm2/h for PLO, PLO plus Transcutol®, and o/w emulsion, respectively. The three formulations did not show significant differences in drug flow, considering p > 0.05. Furthermore, their penetration profiles in both the epidermis and dermis were statistically different. Thus, the incorporation of NFD in PLO, PLO plus Transcutol®, and o/w emulsion changed the drug thermodynamic activity, as expected. In addition, Transcutol® increased the solubility of NFD in the formulation and promoted its penetration in both the epidermis and dermis.  相似文献   

18.
Xanthan gum (XG), a hydrophilic biopolymer with modified release properties, was used to produce directly compressed matrix tablets containing a model drug, sodium p-aminosalicylate. Three formulations were prepared, each containing a different calcium dihydrate salt: calcium chloride, calcium sulfate or dibasic calcium phosphate. The aim of the investigation was to relate the calcium ion content and solubility of the calcium salt to the in vitro drug release profile of the xanthan matrices. Tablet hydration, erosion and drug release were determined in distilled water using the British Pharmacopoeia (BP) paddle method. The data showed that the overall drug release was the greatest with addition of calcium sulfate, followed by calcium chloride and dibasic calcium phosphate. The chloride salt formulation displayed the greatest percentage erosion due to rapid mass loss during the initial phase, followed by those with sulfate or phosphate salts. As xanthan gel viscosity increased and drug release was also found to be lower, it can be concluded that drug release is influenced by the solubility of the salt present in the formulation, since these parameters determine the viscosity and structure of the gel layer.  相似文献   

19.
Purpose: Metformin hydrochloride (MF) repurposing as adjuvant anticancer therapy for colorectal cancer (CRC) proved effective. Several studies attempted to develop MF-loaded nanoparticles (NPs), however the entrapment efficiency (EE%) was poor. Thus, the present study aimed at the facile development of a new series of chitosan (CS)-based semi-interpenetrating network (semi-IPN) NPs incorporating Pluronic® nanomicelles as nanocarriers for enhanced entrapment and sustained release of MF for efficient treatment of CRC.

Methods: The NPs were prepared by ionic gelation and subsequently characterized using FTIR, DSC, TEM, and DLS. A full factorial design was also adopted to study the effect of various formulation variables on EE%, particle size, and zeta-potential of NPs.

Results: NPs had a spherical shape and a mean particle size ranging between 135 and 220?nm. FTIR and DSC studies results were indicative of successful ionic gelation with the drug being dispersed in its amorphous form within CS-Pluronic® matrix. Maximum EE% reaching 57.00?±?12.90% was achieved using Pluronic®-123 based NPs. NPs exhibited a sustained release profile over 48?h. The MF-loaded NPs sensitized RKO CRC cells relative to drug alone.

Conclusion: The reported results highlighted the novel utility of the developed NPs in the arena of colon cancer treatment.  相似文献   

20.
Dipyridamole (DIP), having a short biological half-life, has a narrow absorption window and is primarily absorbed in the stomach. So, the purpose of this study was to prepare controlled-release floating (CRF) tablets of dipyridamole by the dry-coated method. The influence of agents with different viscosity, hydroxypropylmethylcellulose (HPMC) and polyvinylpyrollidon K30 (PVP K30) in the core tablet and low-viscosity HPMC and PVP K30 in the coating layer on drug release, were investigated. Then, a study with a three-factor, three-level orthogonal experimental design was used to optimize the formulation of the CRF tablets. After data processing, the optimized formulation was found to be: 80?mg HPMC K4M in the core tablet, 80?mg HPMC E15 in core tablet and 40?mg PVP K30 in the coating layer. Moreover, an in vitro buoyancy study showed that the optimized formulation had an excellent floating ability and could immediately float without a lag time and this lasted more than 12?h. Furthermore, an in vivo gamma scintigraphic study showed that the gastric residence time of the CRF tablet was about 8?h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号