首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

In this study, the effect of drug loading on the nasal absorption of insulin was determined. Human insulin was loaded into different drug carriers by two methods: supercritical fluid processing and freeze-drying. The powder formulations were characterized and then evaluated after nasal administration to alloxan induced diabetic rabbits at a dose of 5U/kg and 7.5U/kg. The blood glucose levels and serum insulin levels were monitored for five hours after administration of insulin formulations. The drug carriers evaluated were: ammonium glycyrrhizinate (AG), polyacrylic acid (PAA), cross-linked polyacrylic acid (CPAA), polyethylene oxide (PEO) and chitosan (CHTN).

Nasal administration of AG infused with insulin by carbon dioxide resulted in absolute bioavailability of 9.81% as compared to 2.86% observed with same powder loaded with insulin by freeze-drying. 8.05% bioavailability was obtained with PAA powder loaded with insulin by carbon dioxide as compared to much lower absorption seen with freeze-dried formulation. Similarly a two fold increase in absolute bioavailability was observed when carbon dioxide infused CPAA powder formulation was compared to the lyophilized powder. Nasal administration of PEO and CHTN loaded with insulin by carbon dioxide resulted in bioavailabilities of 1.55% and 1. 18% respectively.

The drug-loading process seems to have a significant effect on nasal absorption of insulin. The powders loaded with insulin by carbon dioxide infusion resulted in significantly higher absorption. The exact mechanism is still not known and a possible explanation for increased absorption may be due to improved stability of insulin in carbon dioxide infused formulations. Among the powders evaluated, polyacrylic acid and ammonium glycyrrhizinate prepared by carbon dioxide infusion as drug-loading method seem to offer good potential for development of nasal powder dosage forms for insulin.  相似文献   

2.
Context: Poor biopharmaceutical properties and toxicities associated with the intravenous formulation of docetaxel (DTX) necessitate the exploration of an alternate oral route of delivery.

Objective: This study aims at enhancing the solubility of poorly soluble drug, DTX with the help of solid dispersion (SD) technique.

Method: DTX SDs were formulated with selected solubilizers, including Kollidon 12PF, Lutrol F68, Soluplus and Hydroxypropyl-β-cyclodextrin in different weight ratios. Freeze-drying method was used to prepare the binary and ternary SDs. Kinetic solubility of the SDs was evaluated in order to select best DTX-solubilizer combination. Best performing combination was then characterized using differential scanning calorimeter (DSC), powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM).

Results and Discussion: Among all SDs tested, Soluplus outperformed all the excipients at equivalent weight ratio. Binary SD of DTX and Soluplus (1:10) resulted in the highest improvement in solubility (362.93?±?11.01?µg/mL). This is approximately a 93-fold increment as compared to the solubility of crystalline DTX (3.9?±?0.2?µg/mL). This exceptional performance can be attributed to solid-state transformation as well as micellization.

Conclusion: Among all the excipients tested, Soluplus dispersion is the most promising candidate for oral formulation development.  相似文献   

3.
Abstract

Context: Dry powder inhaler (DPI) formulations have been developed to deliver large amounts of drugs to the lungs.

Objective: Fine particles of a poorly water-soluble drug, the model drug ONO-2921, were prepared by the emulsion solvent diffusion (ESD) method for use in a DPI.

Methods: The effects of additives on the fine particle formation of ONO-2921 were estimated when droplets of an ethanolic drug solution were dispersed into aqueous media containing various additives. Subsequently, the suspensions were freeze-dried to create powdered samples to estimate the inhalation properties using a twin impinger and an Andersen cascade impactor.

Results: This simple ESD method produced submicron-sized ONO-2921 particles (approximately 600?nm) in combination with suitable additives. In addition, the freeze-dried powder produced using additives exhibited superior in vitro inhalation properties. Among these methods, the freeze-dried powder produced with 0.50% weight/volume one type of polyvinyl alcohol (PVA-205) displayed the most efficient features in the fine particle fraction (FPF). These results could be explained by the stabilization of the ONO-2921 suspension by PVA-205, indicating that PVA-205 acts as an aggregation inhibitor of fine particles.

Conclusions: The ESD method, in combination with appropriate types and amounts of additives, may be useful for preparing a DPI suitable for delivering drugs directly to the lungs without the assistance of carrier particles.  相似文献   

4.
Purpose: To discuss the challenges and opportunities for dry powder nasal medications and to put this in to perspective by evaluating and characterizing the performance of the Teijin beclomethasone dipropionate (BDP) dry powder nasal inhaler; providing a baseline for future nasal products development.

Methods: The aerosol properties of the formulation and product performance of Teijin powder intranasal spray were assessed, with a particular focus on particle size distribution (laser diffraction), powder formulation composition (confocal Raman microscope) and aerosol performance data (British Pharmacopeia Apparatus E cascade impactor, aerosol laser diffraction).

Results: Teijin Rhinocort® (BDP) dry powder spray formulation is a simple blend of one active ingredient, BDP with hydroxypropylcellulose (HPC) carrier particles and a smaller quantity of lubricants (stearic acid and magnesium stearate). The properties of the blend are mainly those of the carrier (Dv50?=?98?±?1.3?µm). Almost the totality of the capsule fill weight (96.5%) was emitted with eight actuations of the device. Using the pharmacopeia suggested nasal chamber deposition apparatus attached to an Apparatus E impactor. The BDP main site of deposition was found to be in the nasal expansion chamber (90.2?±?4.78%), while 4.64?±?1.38% of the BDP emitted dose was deposited on Stage 1 of the Apparatus E.

Conclusions: The Teijin powder nasal device is a simple and robust device to deliver pharmaceutical powder to the nasal cavity, thus highlighting the robustness of intranasal powder delivery systems. The large number of actuations needed to deliver the total dose (eight) should be taken in consideration when compared to aqueous sprays (usually two actuations), since this will impact on patient compliance and consequently therapeutic efficacy of the formulation.  相似文献   

5.
ABSTRACT

A novel method was evaluated for preparation of hydrophobic drugs cyclodextrin (CD) complex in this study. To obtain sterilized drug-CD complex lyophilized powder for injection or other purpose, the CD solution in water and the hydrophobic drug in tertiary butyl alcohol (TBA) were mixed in a suitable volume ratio, filtered through 0.22 μm millpores, and subsequently freeze-dried. A high drug concentration was obtained in the co-solvent due to the good solvency of TBA, which is miscible with water in any proportion, for hydrophobic drugs. Moreover, TBA could be removed rapidly and completely by freeze-drying because of its high vapor pressure and high melting point. The chemical stability of some labile active compounds was also improved in TBA-water co-solvent. Based on the data from differential scanning calormetry (DSC) and X-ray diffractometry (XRD), drug was amorphous in freeze-dried complex. The fourier transform infrared spectra indicated drug-CD interaction was present in drug-CD complex. An enhanced dissolution rate was also obtained in drug-CD complex. These results proved drug-CD complex had been formed after this technique. Thus, this report provided a simple, efficient, and economic technique for preparation of hydrophobic drugs CD complex, which may be useful practically in modifying hydrophobic drugs physicochemical properties and improving their absorption and pharmacodynamics.  相似文献   

6.
Abstract

The stability of a moisture-sensitive drug is not only determined by its own physical state, but also by the formulation in which it is present. This paper demonstrates that decomposition of amorphous vecuronium bromide in a formulation is a function of the water activity rather than of the water content in relative or stoichiometric terms. For freeze-dried formulations this means that the disadvantageous lyophilization characteristics of glass forming excipients can have definite stabilizing, other than cryoprotective, effects. With knowledge of degradation kinetics at various water levels, moisture isotherms of the formulation and the properties of package, shelf-life of a product can be estimated.  相似文献   

7.
Purpose: Zaleplon (ZL) is a hypnotic drug prescribed for the management of insomnia and convulsions. The oral bioavailability of ZL was low (~30%) owing to poor water solubility and hepatic first-pass metabolism. The cornerstone of this investigation is to develop and optimize solid lipid nanoparticles (SLNs) of ZL with the aid of Box–Behnken design (BBD) to improve the oral bioavailability.

Methods: A design space with three formulation variables at three levels were evaluated in BBD. Amount of lipid (A1), amount of surfactant (A2) and concentration of co-surfactant (%) (A3) were selected as independent variables, whereas, particle size (B1), entrapment efficiency (B2) and zeta potential (ZP, B3) as responses. ZL-SLNs were prepared by hot homogenization with ultrasonication method and evaluated for responses to obtain optimized formulation. Morphology of nanoparticles was observed under SEM. DSC and XRD studies were examined to understand the native crystalline behavior of drug in SLN formulations. Further, in vivo studies were performed in Wistar rats.

Results: The optimized formulation with 132.89?mg of lipid, 106.7?mg of surfactant and 0.2% w/v of co-surfactant ensued in the nanoparticles with 219.9?±?3.7?nm of size, ?25.66?±?2.83?mV surface charge and 86.83?±?2.65% of entrapment efficiency. SEM studies confirmed the spherical shape of SLN formulations. The DSC and XRD studies revealed the transformation of crystalline drug to amorphous form in SLN formulation. In conclusion, in vivo studies in male Wistar rats demonstrated an improvement in the oral bioavailability of ZL from SLN over control ZL suspension.

Conclusions: The enhancement in the oral bioavailability of ZL from SLNs, developed with the aid of BBD, explicated the potential of lipid-based nanoparticles as a potential carrier in improving the oral delivery of this poorly soluble drug.  相似文献   

8.
In this study, the effect of drug loading on the nasal absorption of insulin was determined. Human insulin was loaded into different drug carriers by two methods: supercritical fluid processing and freeze-drying. The powder formulations were characterized and then evaluated after nasal administration to alloxan induced diabetic rabbits at a dose of 5U/kg and 7.5U/kg. The blood glucose levels and serum insulin levels were monitored for five hours after administration of insulin formulations. The drug carriers evaluated were: ammonium glycyrrhizinate (AG), polyacrylic acid (PAA), cross-linked polyacrylic acid (CPAA), polyethylene oxide (PEO) and chitosan (CHTN).

Nasal administration of AG infused with insulin by carbon dioxide resulted in absolute bioavailability of 9.81% as compared to 2.86% observed with same powder loaded with insulin by freeze-drying. 8.05% bioavailability was obtained with PAA powder loaded with insulin by carbon dioxide as compared to much lower absorption seen with freeze-dried formulation. Similarly a two fold increase in absolute bioavailability was observed when carbon dioxide infused CPAA powder formulation was compared to the lyophilized powder. Nasal administration of PEO and CHTN loaded with insulin by carbon dioxide resulted in bioavailabilities of 1.55% and 1. 18% respectively.

The drug-loading process seems to have a significant effect on nasal absorption of insulin. The powders loaded with insulin by carbon dioxide infusion resulted in significantly higher absorption. The exact mechanism is still not known and a possible explanation for increased absorption may be due to improved stability of insulin in carbon dioxide infused formulations. Among the powders evaluated, polyacrylic acid and ammonium glycyrrhizinate prepared by carbon dioxide infusion as drug-loading method seem to offer good potential for development of nasal powder dosage forms for insulin.  相似文献   

9.
ABSTRACT

The aim of this work was to develop a ketoprofen tablet which dissolve-rapidly in the mouth, therefore, needing not be swallowed. The solubility and dissolution rate of poorly water-soluble ketoprofen was improved by preparing a lyophilized tablet (LT) of ketoprofen using freeze-drying technique. The LT was prepared by dispersing the drug in an aqueous solution of highly water-soluble carrier materials consisting of gelatin, glycine, and sorbitol. The mixture was dosed into the pockets of blister packs and then was subjected to freezing and lyophilization. The saturation solubility and dissolution characteristics of ketoprofen from the LT were investigated and compared to the plain drug and the physical mixture (PM). Results obtained showed that the increase in solubility of ketoprofen from LT matrix, nearly three times greater than the solubility of the plain drug, was due to supersaturation generated by amorphous form of the drug. Results obtained from dissolution studies showed that LT of ketoprofen significantly improved the dissolution rate of the drug compared with the PM and the plain drug. More than 95% of ketoprofen in LT dissolved within 5 min compared to only 45% of ketoprofen plain drug dissolved during 60 min. Initial dissolution rate of ketoprofen in LT was almost tenfold higher than that of ketoprofen powder alone. Crystalline state evaluation of ketoprofen in LT was conducted through differential scanning calorimetry (DCS) and x-ray powder diffraction (XRPD) to denote eventual transformation to amorphous state during the process. Scanning electron microscopic (SEM) analysis was performed and results suggest reduction in ketoprofen particle size.  相似文献   

10.
Context: Along with other options, solid dispersions prepared by spray drying offer the possibility of formulating poorly soluble drugs in a rapidly dissolving format. As a wide range of potential excipients and solvents is available for spray drying, it is usually necessary to carry out a comprehensive array of studies to arrive at an optimal formulation.

Objective: To study the influence of formulation parameters such as co-sprayed excipients, solvents and packaging on the manufacture, in vitro performance and stability of spray-dried oral drug products using fenofibrate as a model drug.

Materials and methods: Solid dispersions of fenofibrate with different amorphous polymers were manufactured from two solvent systems by spray drying. These were characterized in terms of physicochemical properties, crystalline content and dissolution behavior in biorelevant media upon production and after storage in two packaging systems (Glass and Activ-Vials?).

Results and discussion: Spray drying the same formulation from two different solvents led to different physicochemical properties, dissolution behavior and long-term stability. The dissolution behavior and long-term stability also varied significantly among excipients. The viscosity of the polymer and the packaging material proved to be important to the long-term stability.

Conclusion: For spray-dried products containing fenofibrate, the excipients were ranked according to dissolution and stability performance as follows: PVP derivatives >> HPMC 2910/15, HPMCAS-MF, HP-β-CD >> PVP:PVA 2:8. EtOH 96% proved superior to acetone/water for spray drying with polymers. The results were used to propose a general approach to developing spray-dried formulations of poorly soluble drugs.  相似文献   

11.
Abstract

Wet milling is a multifunctional and the most common method to prepare a drug nanosuspension for improving the bioavailability of poorly water soluble drugs. A suitable way of preparing a high drug-loaded nifedipine nanosuspension using wet stirred media milling was investigated in the present study. Nifedipine, a poorly water soluble drug, was selected as a model drug to enhance its dissolution rate and oral bioavailability by preparing an appropriate crystalline nanosuspension. Process parameters, such as milling media volume, milling speed and milling time, were optimized using the one variable at a time (OVAT) approach. A similar method was used to select an appropriate polymeric stabilizer and a surfactant from different categories of polymeric stabilizers (HPC SL, HPC SSL Soluplus®, Kollidon® VA 64 and HPMC E 15) and surfactants (Poloxamer 407, Kolliphor TPGS and Docusate sodium). A systematic optimization of critical formulation parameters (such as drug concentration, polymer concentration and surfactant concentration) was performed with the aid of the Box-Behnken design. Mean particle size, polydispersity index and zeta potential as critical quality attributes (CQAs) were selected in the design for the evaluation and optimization of the formulation and validation of the improved product. The nifedipine nanosuspension that was prepared using HPC and poloxamer 407 was found to be most stable with the lowest mean particle size as compared with the formulations prepared using other polymeric stabilizers and surfactants. The optimized formulation was further spray-dried and characterized using the Fourier Transform Infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), polarized light microscopy (PLM) and in-vitro dissolution study. Results have shown no interaction between the drug particles and stabilizers, nor a reduction in the crystallinity of drug, nor an increase in the saturation solubility and rapid in vitro dissolution as compared with pure nifedipine crystals. Thus, the current study supports the suitability of the wet stirred media milling method and a combination of HPC SSL and poloxamer 407 as stabilizers for the preparation of nifedipine nanosuspension.  相似文献   

12.
Objective: A novel tablet formulation containing an amorphous solid dispersion (ASD) of elacridar hydrochloride was developed with the purpose to resolve the drug’s low solubility in water and to conduct proof-of-concept clinical studies.

Significance: Elacridar is highly demanded for proof-of-concept clinical trials that study the drug’s suitability to boost brain penetration and bioavailability of numerous anticancer agents. Previously, clinical trials with elacridar were performed with a tablet containing elacridar hydrochloride. However, this tablet formulation resulted in poor and unpredictable absorption which was caused by the low aqueous solubility of elacridar hydrochloride.

Methods: Twenty four different ASDs were produced and dissolution was compared to crystalline elacridar hydrochloride and a crystalline physical mixture. The formulation with highest dissolution was characterized for amorphicity. Subsequently, a tablet was developed and monitored for chemical/physical stability for 12 months at +15–25?°C, +2–8?°C and ?20?°C.

Results: The ASD powder was composed of freeze dried elacridar hydrochloride–povidone K30–sodium dodecyl sulfate (1:6:1, w/w/w), appeared fully amorphous and resulted in complete dissolution whereas crystalline elacridar hydrochloride resulted in only 1% dissolution. The ASD tablets contained 25?mg elacridar hydrochloride and were stable for at least 12 months at –20?°C.

Conclusions: The ASD tablet was considered feasible for proof-of-concept clinical studies and is now used as such.  相似文献   

13.
Dapoxetine (D) suffers from poor oral bioavailability (42%) due to extensive metabolism in the liver. The aim of this study was to enhance the bioavailability of D via preparing instantly-dispersible nanocarrier powder system (IDNPs) for intranasal delivery of D. IDNPs were prepared using the thin film hydration technique, followed by freeze-drying to obtain easily reconstituted powder providing rapid and ready method of administration. The produced nanocarrier systems were evaluated for drug content, entrapment efficiency percentage, particle size, polydispersity index, zeta potential, and drug payload. The optimized nanocarrier system was morphologically evaluated via transmission electron microscopy and the optimized freeze-dried IDNPs were evaluated for ex-vivo permeation and in-vivo pharmacokinetic studies in rabbits following intranasal and oral administration. The relative bioavailability of D after intranasal administration of freeze-dried IDNPs was about 235.41% compared to its corresponding oral nanocarrier formulation. The enhanced D permeation and improved bioavailability suggest that IDNPs could be a promising model for intranasal delivery of drugs suffering from hepatic first pass effect.  相似文献   

14.
Purpose: In this study, micron-sized crystalline drug particles of irbesartan (IBS) were prepared to improve its stability and dissolution rate.

Method: The approach to crystalline particles was based on the liquid precipitation process by which the amorphous particles were prepared. Pharmaceutical acceptable additives were used as the crystallization agent to convert the amorphous drug into crystalline particles. High pressure homogenization (HPH) process has been employed to reduce the size of the crystalline particles, and the micron-sized particles were obtained by the freeze-drying process.

Results: Different additives show different influences on the polymorphic form of IBS. Polyvinylpyrrolidone (PVP) and hydroxypropyl methylcellulose (HPMC) were effective in stabilizing amorphous particles instead of converting amorphous drug into crystalline particles, while poloxamer407 (F127) and tween80 (T80) could convert the amorphous drug into crystalline particles. T80 was also effective in controlling the particle size than that of F127. After HPH, crystalline particles with an average of 0.8 μm were obtained. The freeze-dried micron-sized crystalline particles exhibited significantly enhanced in vitro dissolution rate when compared to the raw drug. SEM, FT-IR, XRD, DSC and dissolution rate studies indicated that the micron-sized particles were stable during 6 months storage.

Conclusion: The preparation of micron-sized crystalline drug particles is an effective way to improve the stability and dissolution rate of irbesartan.  相似文献   

15.
Objective: The objectives of this study were, first, to develop a free-flowing and stable proniosome formulation for poorly water-soluble drugs such as vinpocetine; and second, to estimate its bioavailability as oral drug delivery system.

Methods: The proniosomes consisting of span60, cholesterol, sorbitol and vinpocetine were prepared by a novel approach. After the proniosomes were contacted with water, the suspension of vinpocetine-loaded niosomes formed automatically. The proniosomes and reconstituted niosomes were evaluated for their physicochemical characteristics, in vitro drug dissolution and release, integrity and stability at different GI tract pH conditions, in situ single-pass intestinal perfusion and in vivo bioavailability.

Results: The proniosome powder exhibited excellent flowability. The reconstituted niosomes with high drug entrapment efficiency (89.67?±?3.28%) showed spherical morphology with smooth surface under transmission electron microscope (TEM). X-ray diffraction (XRD) indicated that the drug was in an amorphous or molecular state in proniosome powder. In vitro dissolution and release study, proniosomes did enhance the dissolution and release rate compared to vinpocetine suspension in phosphate buffer solution (pH 7.2). Proniosome-derived niosomes could keep their integrity and stability at different GI tract pH conditions. The in situ single-pass intestinal perfusion indicated that encapsulation of vinpocetine into niosomes could largely improved the absorption of vinpocetine. The AUC(0?∞) of F2 and F3 was about 4.0- and 4.9-fold higher than that of the vinpocetine suspension, respectively. The results demonstrated the proniosomes indeed remarkably enhanced the oral bioavailability of vinpocetine.

Conclusion: This study suggested the potential of proniosomes as stable precursors for the immediate preparation of niosome carrier systems.  相似文献   

16.
Abstract

Solid dispersions of hydroxypropyl β-cyclodextrins (HPB), a highly water soluble derivative of β-cyclodextrin and ketoprofen (KPF), were prepared by kneading, coevaporation, and freeze-drying. X-ray diffraction, differential scanning calorimetry, and scanning electron microscopy were used to investigate characteristics of the solid dispersions and to study the possibility of complexation of the drug with HPB. A marked difference in characteristics of dispersions was observed due to their methods of preparation. The solubility of KPF in the solid dispersions was studied by the dispersed powder technique and was found to have improved considerably over that of the drug pure alone. The dispersions had good compressibiliry. Tablets so compressed displayed good dissolution profiles.  相似文献   

17.
Abstract

The use of polymers in controlling the release of drugs has become important in the formulation of pharmaceuticals. Watersoluble polymers such as polyethylene glycol and polyvinylpyrrolidone may be used to increase the dissolution rates of poorly soluble drugs (Ford)1 and slowly soluble, biodegradable polymers such as polylactic acid may be used for controlled release implants (Rak et a1.2), Hydrogels provide the basis for implantation, transdermal and oral-controlled release systems. Hydroxypropylmethylcellulose (HPMC) are cellulose ethers which may be used as the basic for hydrophilic matrices for controlled release oral delivery.

In tablet matrix systems the tablet is in the form of compressed compact containing an active ingredient, lubricant, excipient, filler or binder. The matrix may be tabletted from wet-massed granules or by direct compression.

This review article examines a previously published series of work and concentrates on the following aspects of the subject; the relationship between release rate and quantity of polymers, such consideration allow a certain predicability in release rates to be made. Also the effect of drug particle size, tablet shape and the presence of additional diluents in the formula are examined.  相似文献   

18.
Abstract

Carbenicillin indanyl sodium, commonly known as Geocillin (GC), is an orally effective derivative of carbenicillin employed in the treatment of gram negative infections of the urinary tract. GC exhibits an extremely bitter taste which affects patient compliance upon oral dosing (1). A novel coating approach allows Geocillin to be prepared as a suspension for oral administration. GC is available only as a tablet.

Eudragit E100R [EE] is a tasteless, acid soluble cationic polymer. Encapsulation of GC with [EE] inhibited its release in the mouth, thus overcoming its bitter taste. Dissolution studies were carried out in simulated gastric fluid and simulated intestinal fluid. Three factors, viz. sucrose concentration, lacquer concentration and coating time were evaluated to arrive at an optimally acceptable formulation.

The formulation containing GC and sucrose in the ratio of 1:3, suspension coated using a 5% w/w lacquer solution for 40 mins. yielded taste free microcapsules with optimal release characteristics.  相似文献   

19.
Objective: The use of spray-dried powders containing tretinoin-loaded nanocapsules instead of the original liquid suspension, aimed at the preparation of dermatological nanomedicines with improved photostability, was investigated.

Methods: Powders were prepared using lactose as a drying adjuvant. Hydrogels were prepared using two approaches: dispersing Carbopol Ultrez 10® in an aqueous redispersion of the powder or incorporating the powder in previously formed hydrogels.

Results and discussion: The photodegradation of tretinoin in hydrogels prepared with the powders showed similar half-life times (around 19.5 h) compared to preparations with the original liquid nanocapsules (20.7 ± 1.4 h), regardless of the preparation approach. In addition, the topical nanomedicines prepared with the spray-dried powders presented a significant improvement in tretinoin photostability compared to the formulation containing the non-encapsulated drug.

Conclusion: This study verified that the addition of the spray-dried powders containing tretinoin-loaded lipid-core nanocapsules to hydrogels did not influence the photoprotection of the drug compared with the preparation procedure using the original liquid suspension.  相似文献   

20.
Abstract

Interactive mixtures of fine cohesive drug powders and coarse free flowing excipients are reported to increase dissolution rates of poorly soluble drugs. However, dissolution rates are known to be affected by the solubility characteristics of the excipients as well as excipients surface characteristics after mixing with lubricant.

In this study the effects of solubility and particle size of excipients on dissolution of micronized griseofulvin from interactive powder mixtures were investigated. Quantitative assessment of dissolution from such mixtures showed that systems containing soluble excipients increased dissolution of the drug more efficiently than mixtures prepared using insoluble excipients. The role of the soluble excipient was more significant after mixing with magnesium stearate. Excipients of smaller particle sizes increased dissolution more efficiently than their large size counterparts. Effects of particle size were particularly significant in case of water insoluble excipients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号