首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
针对进行水管冷却的混凝土浇筑仓温度场仿真计算时,水管冷却等效热传导方程中的混凝土初温的计算存在不同的算法,采用水管冷却精细有限元法和水管冷却等效热传导法,对含冷却水管的混凝土棱柱体进行温度场对比分析,研究了水管冷却等效热传导法中混凝土初始温度的计算方法.分析认为水管冷却等效热传导方程中的混凝土初温应是含冷却水管的混凝土棱柱体在通水开始时刻的混凝土平均温度,该平均温度可由混凝土棱柱体单元高斯点温度与高斯点所占体积的乘积除于混凝土棱柱体单元体积获得.  相似文献   

2.
根据实测的接驾咀特大桥系杆拱桥端横梁的水化热温度场,采用三维瞬态温度场理论,利用ANSYS有限元软件,对分二次浇筑与整体浇筑时端横梁水化热温度场和应力场的分布规律进行了分析。分析结果表明,整体浇筑时端横梁水化温升要较分层浇筑时快,采用分层浇筑方式可有效地降低大体积混凝土水化效应的温度场和温度应力。所建立的大体积混凝土水化效应的温度场和温度应力的有限元分析方法和分析结果可为施工方案的选择提供参考。  相似文献   

3.
用有限差分法计算了三峡永久船闸闸室混凝土底板的温度场 ,考虑了分层浇筑的影响以及水管初期通水冷却和水管中后期通水冷却的效果 .对其应力场进行了分析 .推荐了比较有效的温控措施 .  相似文献   

4.
随着大体积混凝土的广泛应用,混凝土的裂缝控制问题日益突出.裂缝的产生会导致混凝土的抗渗、抗腐蚀等性能下降,影响结构的耐久性.本文分析了大体积混凝土由于水化热而产生的开裂机理,结合实际工程,应用Midas软件模拟大体积混凝土温废场,重点解决了混凝士分层浇筑、水管冷却及边界条件等因素对其温控的影响,监测结果与理论分析较好吻合,论文研究工作对类似工程具有借鉴作用.  相似文献   

5.
大体积承台混凝土早期表面开裂控制措施   总被引:1,自引:0,他引:1  
针对大体积混凝土浇筑时因水化热作用引起的早期表面开裂问题,对比分析浇筑温度、环境温度、保温材料以及位移约束条件4种因素对混凝土表面应力的影响程度.以宁波象山港公路大桥承台为实例建立有限元模型,选取6个开裂关键部位的节点,分析这些节点的应力数值在28d龄期内随4种影响因素变化的规律.模拟分析分层浇筑和水管冷却2种降温措施对于减小混凝土表面拉应力的作用.结果表明,混凝土表面拉应力与浇筑温度呈正比,与环境温度呈反比;保温层对承台表面中心部位拉应力的影响大于边缘部位;提高模板的刚度对抗裂有利;分层浇筑和水管冷却可以不同程度地改善表面开裂状况.  相似文献   

6.
大体积混凝土结构在浇注期间产生裂缝的主要原因是混凝土内外温差和均匀降温所致.介绍了大体积混凝采用水管冷却时温度场的计算方法.例举了高层建筑结构转换层混凝土厚板采用水管冷却时的混凝土的优化配合比和测温方法.由计算和测温表明,混凝土厚板温度场的计算值和实测值吻合较好,有埋设冷却水管的温控效果明显优于未埋设冷却水管时的自然降温效果.  相似文献   

7.
中后期冷却期间混凝土浇筑仓温度动态预测模型   总被引:3,自引:1,他引:2  
进行全坝全过程温度场仿真分析,计算工作量大;采用数理统计分析方法或神经网络等智能方法建立的温度预测模型本质上是一个经验模型,当通水水温和通水流量突然发生变化时,外延预报精度差.建议了一种混凝土坝中后期冷却期间浇筑仓温度动态预测模型,即采用无热源水管冷却问题的混凝土平均温度计算式,联合实测温度,对无热源水管冷却问题的混凝土平均温度计算式中的Ti进行动态更新,动态预测浇筑仓降温过程线.实例分析表明,采用无热源水管冷却问题的混凝土平均温度计算式,结合浇筑仓当前实测温度可以方便快捷地对未来7~10d的温度状态进行动态预测,为中后期通水冷却浇筑仓温度的智能调控提供及时的参考.  相似文献   

8.
针对九江长江公路大桥北塔承台大体积混凝土施工,利用MIDAS程序对其温度场及温度应力进行了有限元数值模拟分析,揭示了桥梁建设中大体积混凝土分层浇筑的温度场和应力场的特性和变化规律,为大体积混凝土不出现有害温度裂缝的温控防裂措施提供了依据。  相似文献   

9.
考虑外界气温条件、水泥水化热、弹模、徐变等热力学和物理力学参数以及分层浇筑(利用生死单元实现分层浇筑)对闸墩温度应力的影响,利用ANSYS软件三维有限元法进行闸墩施工期的瞬态温度场和应力场仿真计算.结果表明:内外温差过大,内部温升温降太快是闸墩出现裂缝的主要原因,并提出了对拌合材料冷却,降低浇筑温度,采用优化的保温保湿养护方法,在混凝土内预埋冷却水管,选用低热水泥,使用减水剂等减小内外温差,减缓温升温降过程,以有效防止施工期表面裂缝的产生.  相似文献   

10.
安徽省新广电中心项目一期工程中的主楼筒体承台基础CT-1等厚度达3.5m,属大体积混凝土结构。为克服大体积混凝土因水化热过高产生裂缝,施工采取优化混凝土配合比、设置后浇带、斜面分层浇筑和实施混凝土浇筑后温度监测等一系列措施,成功地控制了温度和混凝土裂缝的产生,确保了该大体积混凝土基础承台的施工质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号