首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using attapulgite (ATP) as matrix, chitosan (CS) as functional monomer, and introducing the surface ionimprinting concept, a new Cu(II)-IIP was prepared, and characterized by SEM, XRD and FT-IR. The adsorption of Cu(II) aqueous solution with Cu(II)-IIP was investigated by flame atomic adsorption spectroscopy (FAAS). The polymer has good selectivity for Cu(II) from competitive metal ions, and the selectivity coefficient of Cu(II) relation to Pb(II), Cd(II) was 78.45 and 82.44, respectively. Sorption equilibrium isotherms could be described by Langmuir and Freundlich models; the Freundlich isotherm has shown the best agreement with experimental data, and experimental value of maximum adsorption capacity for Cu(II) was 35.20 mg/g. The obtained thermodynamic parameter (ΔG o , ΔH o , ΔS o ) showed that the Cu(II) adsorption process is a spontaneous and endothermic process. The kinetic data showed that pseudo-second-order kinetic model agrees very well with the dynamic behavior for the sorption of Cu(II) onto Cu(II)-IIP.   相似文献   

2.
Kinetic and isothermal studies of lead ion adsorption onto bentonite   总被引:4,自引:1,他引:3  
The use of bentonite for the removal of Pb(II) from aqueous solutions for different contact times, pH of suspension, and initial concentration of Pb and particle sizes of absorbent was investigated. Batch adsorption kinetic experiments revealed that the adsorption of Pb(II) onto bentonite involved fast and slow processes. The adsorption mechanisms in the lead/bentonite system followed pseudo-second-order kinetics with a significant contribution of film diffusion. The adsorption isotherms were described by means of the Langmuir and Freundlich isotherms and the Langmuir model represented the adsorption process better than the Freundlich model. The maximum adsorption capacity of Pb(II) onto natural bentonite was 78.82 mg g− 1.  相似文献   

3.
Nanocomposite superabsorbents were synthesized by simultaneously solution copolymerization of acrylamide (AAm) and sodium acrylate (Na-AA) in the presence of carrageenan biopolymer and sodium montmorillonite (Na-MMt) nanoclay. Potassium persulfate (KPS) and methylenebisacrylamide (MBA) were used as initiator and crosslinker, respectively. The structure and morphology of the nanocomposites were investigated using XRD, FTIR, scanning electron microscopy (SEM), and TEM techniques. The influence of nanoclay and carrageenan contents as well as monomer weight ratios on the degree of swelling of nanocomposites was studied. The optimum water absorbency was obtained at 10 wt% of clay, 10 wt% of carrageenan, and 1:1 of monomers weight ratio. The obtained nanocomposites were examined to remove of crystal violet (CV) cationic dye from water. The effect of carrageenan and clay content on the speed of dye adsorption revealed that while the rate of dye adsorption is enhanced by increasing the clay content up to 14 wt% of clay, it was decreased as the carrageenan increased in nanocomposite composition. The results showed that the pseudo-second-order adsorption kinetic was predominated for the adsorption of CV onto nanocomposites. The experimental equilibrated adsorption capacity of nanocomposites was analyzed using Freundlich and Langmuir isotherm models. The results corroborated that the experimental data fit the Freundlich isotherm the best.  相似文献   

4.
《分离科学与技术》2012,47(15):2436-2449
In this study, sulphuric acid treated cashew nut shell (STCNS) was used as adsorbent for the removal of lead(II) ions from the aqueous solutions. Adsorption studies were performed by varying the solution pH, contact time, and temperature. Experimental data were analyzed by the model equations such as Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherms and it was found that the Freundlich isotherm model fits best with the experimental data at different temperatures studied. The maximum adsorption capacity of lead(II) on STCNS was determined as 408.6, 432, 446.3, and 480.5 mg/g, respectively, at different temperatures (30, 40, 50, and 60°C). The thermodynamic parameters (ΔGo, ΔHo, and ΔSo) were calculated and the thermodynamic properties of lead(II) ions-STCNS system indicate the exothermic process. Adsorption kinetic constants were determined using pseudo-first-order, pseudo-second-order, and the Elovich kinetic models at various temperatures. The adsorption results clearly showed that the adsorption of lead(II) ions onto STCNS followed pseudo-second-order model and the adsorption was both by film diffusion and by intraparticle diffusion. A single-stage batch adsorber was designed using the Freundlich equation.  相似文献   

5.
Research of efficient materials is a well-established technology. In this work, a novel and excellent host, with sulfur donor atom, for heavy metals adsorption was synthesized by chemical immobilization of nitrothiophene receptor onto silica particles. The new adsorbent was well characterized by Brunauer–Emmett–Teller, Barrett-Joyner-Halenda, scanning electron microscopy, elemental analysis, FT-IR, and solid-state 13C nuclear magnetic resonance. The new surface exhibits good thermal stability determined by thermogravimetric analysis, and a good chemical stability as investigated in various acidic and buffer solutions. The adsorption properties were investigated using Cu(II), Pb(II), Cd(II), and Zn(II) metals by varying all relevant parameters including pH, contact time, concentration, temperature, kinetics, and Langmuir isotherms. The adsorption efficiency increases with increasing pH and follows pseudo-second-order kinetics. The maximum equilibrium time was found to be 30?min for all metal ions. The thermodynamic analysis (ΔH°, ΔS°, and ΔG°) revealed that the adsorption was endothermic and spontaneous.  相似文献   

6.
Locally sourced clay was harnessed to study its adsorptive potential of methylene blue (MB) in wastewater streams. The clay was modified with sulfuric acid and aluminum hydroxide. The raw and modified freeze dried clay bead RHC and MHC were subjected to batch and batch/fixed-bed adsorption studies, respectively. Elemental analysis, morphological structures were determined, and surface area of 19.3 (RHC) and 101.2 (MHC) m2/g were obtained. Langmuir, Freundlich and Redlich–Peterson isotherms models were analyzed and the modification increased adsorption capacity from 58.02 to 223.19 mg/g at 30 °C. The MB adsorption on RHC/MHC was spontaneous, exothermic and obeyed pseudo-second-order model.  相似文献   

7.
In this work, the application of Jatobá bark (the waste product of medicinal plant processing) in removal of the cationic dyes Methylene Blue, Crystal Violet and Rhodamine B from aqueous solution was studied in a batch system. The effect of contact time, pH and temperature on dye removal was investigated. An increase in pH from 2 to 10 was accompanied by an increase in the amount of dye adsorbed. The equilibrium sorption data fitted to the Langmuir, Freundlich and Langmuir–Freundlich equations were investigated. The Langmuir–Freundlich isotherm exhibited the best fit with the experimental data and the maximum adsorption capacities at room temperature being 211.5, 89.5 and 69.4 for Rhodamine B, Methylene Blue and Crystal Violet, respectively. The kinetic sorption was evaluated by the pseudo‐first‐order, pseudo‐second‐order and intraparticle diffusion models. It was observed that sorption follows the pseudo‐second‐order kinetic model. The thermodynamic parameters for the sorption process were also determined. The spontaneous and endothermic nature of adsorption was obtained based on the negative value of free energy (ΔG) and the positive value of enthalpy (ΔH). The results indicate that Jatobá bark could be used as a low‐cost material for the removal of cationic dyes from wastewater.  相似文献   

8.
The sorption behavior, favorability, shape and thermodynamic parameters of Cu(II), Ni(II), Pb(II), and Fe(III) ions sorption onto the ion exchage acrylic fiber were studied by applying Langmuir, Freundlich, Dubinin‐Radushkevich and Redlich–Peterson models. Analytical studies from sorption isotherms proved that sorption process follows mono layer adsorption mechanism. Gibbs free energy was spontaneous for all interactions. The adsorption processes all exhibited endothermic enthalpy values and were accompanied by increasing in entropy. The activation energies for the sorption of metal ions on aminated acrylic fiber were at the same order of magnitude as the activation energy of ion exchange. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
《分离科学与技术》2012,47(6):1215-1230
Abstract

The potential to remove copper (II) ions from aqueous solutions using Na‐mordenite, a common zeolite mineral, was thoroughly investigated. The effects of relevant parameters solution pH, adsorbent dose, ionic strength, and temperature on copper (II) adsorption capacity were examined. The sorption data followed the Langmuir, Freundlich, and Dubinin‐Radushkevich (D‐R) isotherms. The maximum sorption capacity was found to be 10.69 mg/g at pH 6, initial concentration of 40 mg/dm3, and temperature of 40°C. Different thermodynamic parameters viz., changes in standard free energy (ΔG0), enthalpy (ΔH0), and entropy (ΔS0) have also been evaluated and the results show that the sorption process was spontaneous and endothermic in nature. The dynamics of the sorption process were studied and the values of rate constant of adsorption, rate constant of intraparticle diffusion were calculated. The activation energy (Ea) was found to be 11.25 kJ/mol in the present study, indicating a chemical sorption process involving weak interactions between sorbent and sorbate. The interaction between copper (II) ions and Na‐mordenite is mainly attributable to ion exchange. The sorption capacity increased with the increase of solution pH and the decrease of ionic strength and adsorbent dose. The Na‐mordenite can be used to separate copper (II) ions from aqueous solutions.  相似文献   

10.
《分离科学与技术》2012,47(4):923-943
Abstract

The sorption behavior of 2.7×10?5 M solution of Th(IV) ions on 1‐(2‐pyridylazo)‐2‐naphthol (PAN) loaded polyurethane foam (PUF) has been investigated. The quantitative sorption was occurred from pH 6 to 9 from acetate buffer solutions. The sorption conditions were optimized with respect to pH, shaking time, and weight of sorbent. The sorption data followed the Freundlich, Langmuir, and Dubinin‐Radushkevich (D‐R) isotherms very successfully at low metal ions concentration. The Freundlich isotherm constant (1/n) is estimated to be 0.22±0.01, and reflects the surface heterogeneity of the sorbent. The Langmuir isotherm gives the maximum monolayer coverage is to be 8.61×10?6 mol g?1. The sorption free energy of the D‐R isotherm was 17.85±0.33 kJ mol?1, suggesting chemisorption involving chemical bonding was responsible for the adsorption process. The numerical values of thermodynamic parameters such as enthalpy (ΔH), entropy (ΔS), and Gibbs free energy (ΔG) indicate that sorption is endothermic, entropy driven, and spontaneous in nature. The adsorption free energy (ΔGads) and effective free energy (ΔGeff) are also evaluated and discussed. The effect of different anions on the sorption of Th(IV) ions onto PAN loaded PUF was studied. The possible sorption mechanism on the basis of experimental finding was discussed. A new separation procedure of Th(IV) from synthetic rare earth mixture using batch, column chromatography, and squeezing techniques were reported.  相似文献   

11.
《分离科学与技术》2012,47(2):244-255
In this work, the removal of two pharmaceuticals i.e., an antibiotic drug, sulfamethoxazole and an antiparasitary drug, metronidazole onto activated carbon from aqueous solutions were studied. Batch adsorption studies were carried out at different pH, adsorbent concentrations, and temperatures. Adsorption isotherms have been modeled by Freundlich, Langmuir, and Dubinin-Raduskevitch (D-R) equations. The adsorption of these drugs was better represented by the Langmuir equation. The effect of the solution pH on the adsorbed amount of SM and MN was studied by varying the initial pH under constant process parameters at equilibrium conditions. The increase in pH of the solutions caused to decrease adsorption of SM and MN on AC. The kinetics of adsorption in view of three kinetic models, i.e., the first-order Lagergren model, the pseudo-second-order model, and the intraparticle diffusion model was discussed. The pseudo-second-order kinetic model describes the adsorption of both sulfamethoxazole and metronidazole on activated carbon. Rate constants for adsorption and desorption, and surface coverage have been evaluated with the help of another approach of the kinetic scheme. The effect of temperature was also studied at the range between 293 and 313 K. Thermodynamic parameters were calculated. The negative value of enthalpy change (ΔH°) indicated the exothermic nature of the adsorption process, and the negative values of free energy change (ΔG°) were indicative of spontaneity of the adsorption process. In this work adsorption behaviour of SM and MN on activated carbon was also evaluated by the data obtained from column experiments.  相似文献   

12.
《分离科学与技术》2012,47(1):94-104
In this work, calcined and uncalcined mixed clays containing kaolin, ball clay, feldspar, pyrophyllite, and quartz are examined as a potential adsorbent for the removal of crystal violet dye from aqueous solution. These clays are characterized by nitrogen adsorption/desorption isotherms, X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and thermo gravimetric analysis (TGA). The kinetics and thermodynamic parameters as well as the effects of the pH, the temperature, and the adsorbent dosage have also been investigated. The experimental results indicate that the Langmuir model expresses the adsorption isotherm better than the Freundlich model. The obtained result showed a tremendous increase in the crystal violet adsorption capacity (1.9 × 10?3 mol g?1) after calcination, which is one order greater than that of the uncalcined mixed clay. The mechanism of the adsorption process is elucidated on the basis of experimental data. The percentage removal of crystal violet dye increases with increasing the pH, the temperature, and the adsorbent dosage. The investigation of kinetic studies indicates that the adsorption of crystal violet on calcined and uncalcined mixed clays could be described by the pseudo-second-order model. The negative Δ G 0 values obtained from the thermodynamic investigation confirm that the adsorption is spontaneous in nature. The adsorption results suggest that the calcined and uncalcined mixed clays can also be used as low cost alternatives to the expensive activated carbon for the removal of dyes from aqueous solution.  相似文献   

13.
Novel mesostructured silicas with large accessible disordered pores (LPMS) were synthesized via a hydrothermal recrystallization following the evaporation induced self-assembly process by using amphiphilic diblock copolymers poly (ethylene oxide)-b-poly (ε-caprolactone) (PEO-b-PCL) as the template and tetraethyl orthosilicate as the silica source. PEO-b-PCL was synthesized by using versatile ring-opening polymerization method. The prepared LPMS samples were characterized using transmission electron microscopy and N2 sorption isotherms measurements. Meanwhile, the effect of contact time, initial dye concentration, and pH were studied on the adsorption of methyl orange onto LPMS. The isotherms and kinetics of adsorption were also studied. Results obtained from this study indicated that Langmuir model was more suitable to describe the methyl orange adsorption than Freundlich model. The adsorption kinetics was found to follow the pseudo-second-order kinetic model.  相似文献   

14.
Montmorillonite KSF and K10 were used as precursor materials for synthesis of aluminum pillared K10 and KSF (Al-K10 and Al-KSF) which characterized by TGA, XRD, SEM and FT-IR spectroscopic analysis. The sorption of trimethoprim (TMP) which is commonly employed as an antibiotic onto Al-K10 and Al-KSF was also investigated as a function of adsorbent dosage, solution pH, contact time and temperature. The adsorption kinetics was interpreted using pseudo-first-order, pseudo-second-order kinetic models and intraparticle diffusion model. The pseudo-second-order model provided the best correlation. Adsorption isotherm parameters were obtained from Freundlich, Langmuir and Dubinin–Radushkevich (DR) isotherm models. Adsorption of TMP onto Al-K10 and Al-KSF was physical in nature and ion-exchange mechanism for DR equation, respectively. Al-K10 exhibits higher removal capacity at lower adsorbent dosages in comparison with Al-KSF. The removal capacity was increased by increasing pH. ΔH0, ΔS0 and ΔG0 showed that adsorption of trimethoprim was endothermic, increasing randomness and not spontaneous in nature.  相似文献   

15.
Ahmet Sar? 《Desalination》2009,249(1):260-316
The adsorption characteristics of Pb(II) and Cd(II) onto colemanite ore waste (CW) from aqueous solution were investigated as a function of pH, adsorbent dosage, contact time, and temperature. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were applied to describe the adsorption isotherms. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The adsorption capacity of CW was found to be 33.6 mg/g and 29.7 mg/g for Pb(II) and Cd(II) ions, respectively. Analyte ions were desorbed from CW using both 1 M HCl and 1 M HNO3. The recovery for both metal ions was found to be higher than 95%. The mean adsorption energies evaluated using the D-R model indicated that the adsorption of Pb(II) and Cd(II) onto CW were taken place by chemisorption. The thermodynamic parameters (ΔGo, ΔHo and ΔSo) showed that the adsorption of both metal ions was feasible, spontaneous and exothermic at 20-50 °C. Adsorption mechanisms were also investigated using the pseudo-first-order and pseudo-second-order kinetic models. The kinetic results showed that the adsorption of Pb(II) and Cd(II) onto CW followed well pseudo-second order kinetics.  相似文献   

16.
BACKGROUND: The retention behaviour of Pb(II) by hematite was studied as a function of various environmental parameters such as contact time, pH, ionic strength, foreign ions, humic substances and temperature under ambient conditions. RESULTS: Pb(II) sorption on hematite was rapid and the sorption could be described by a pseudo‐second‐order model very well. The sorption of Pb(II) on hematite was strongly dependent on pH and ionic strength. The presence of humic substances enhanced the sorption of Pb(II) on hematite at low pH, but reduced Pb(II) sorption at high pH. The Langmuir model fitted the sorption isotherms of Pb(II) better than the Freundlich model at three different temperatures, 293.15, 313.15 and 333.15 K. The thermodynamic parameters (ΔH°,ΔS° and ΔG°) calculated from the temperature dependent sorption isotherms indicated that the sorption process of Pb(II) on hematite was endothermic and spontaneous. CONCLUSIONS: The results indicate that hematite is a promising candidate for the treatment of heavy metal ions from large volume solution. Copyright © 2011 Society of Chemical Industry  相似文献   

17.
艾莲  罗学刚  王昱豪  梅强 《化工学报》2014,65(4):1450-1461
以分别含有单一的U(Ⅵ)、Cu(Ⅱ)溶液以及U(Ⅵ)、Cu(Ⅱ)混合溶液为吸附质,系统探讨了pH值、吸附剂量、温度、时间和初始离子浓度对向日葵秸秆吸附效果的影响。采用准二级动力学模型、Langmuir、Freundlich和Langmuir-Freundlich等温吸附模型对实验数据进行拟合,从分配系数和分离因子角度对吸附选择性进行分析,并对吸附机理进行探讨。结果表明:向日葵秸秆对U(Ⅵ)和Cu(Ⅱ)的吸附分别是自发的吸热和放热反应;吸附动力学均符合准二级动力学模型,即化学吸附为控速步骤;单离子体系下U(Ⅵ)和Cu(Ⅱ)的吸附等温线分别符合Langmuir-Freundlich和Langmuir等温吸附模型;复配体系下,当干扰Cu(Ⅱ)浓度≥60 mg·L-1时,U(Ⅵ) 的吸附等温线可用Langmuir-Freundlich模型描述;而当干扰U(Ⅵ)浓度≥200 mg·L-1时,Cu(Ⅱ)的吸附等温线可用Langmuir模型描述。当溶液中同时存在U(Ⅵ)和Cu(Ⅱ)两种离子时,离子间存在竞争吸附,且向日葵秸秆对U(Ⅵ)具有更高的选择性,这与金属本身的特性有关。向日葵秸秆吸附前后的SEM、EDX和FT-IR图谱表明,吸附U(Ⅵ)和Cu(Ⅱ)的主要方式为络合和离子交换。  相似文献   

18.
A novel nano-adsorbent SiO2/(3-aminopropyl)triethoxysilane-coated magnetite nanoparticles was synthesized for the adsorption of lead ions from water samples. Its structure and magnetic characteristics were characterized, by FTIR, powder X-ray diffraction, scanning electron microscope (SEM), transmission electron microscope (TEM) and vibrating sample magnetometry (VSM). Amino-functionalized SiO2 coated Fe3O4 magnetite nano-adsorbent exhibited superparamagnetic behavior and strong magnetization at room temperature. The efficiency of the nano-adsorbent in separation of the metals was evaluated by adsorption technique. Kinetic data were analyzed using the pseudo-first-order and pseudo-second-order equations. The data fitted very well to the pseudo-second-order kinetic model.The linear Langmuir and Freundlich models were applied to describe equilibrium isotherms and Langmuir model fitted well. The monolayer adsorption capacity was found as 17.65 mg/g at pH 4.0. Thermodynamic parameters such as free energy change (ΔG°), enthalpy change (ΔH°) and entropy change (ΔS°) were also calculated. These parameters showed that the adsorption of Pb(II) onto nano-adsorbent was feasible, spontaneous and endothermic. The amino-functionalized SiO2 coated Fe3O4 magnetic nano-adsorbent shows high adsorption capability for metal ions from aqueous solutions via the chelation mechanisms. The Pb(II) loaded nano-adsorbent can be easily recovered from aqueous solution with magnetic separation and regenerated readily by acid treatment. The product of this work can be used as an effective and recyclable nano-adsorbent for the removal of metal ions in wastewater treatment.  相似文献   

19.
In the present study, the application for the removal of Ni(II), Cd(II) and Pb(II) ions from aqueous solution by using mesoporous silica materials, namely, MCM-41, nanoparticle of MCM-41, NH2-MCM-41 (amino functionalized MCM-41) and nano NH2-MCM-41 was investigated. Suitable adsorbents preparation techniques were developed in the laboratory. The effects of the solution pH, metal ion concentrations, adsorbent dosages, and contact time were studied. It was found that NH2-MCM-41 showed the highest uptake for metal ions in aqueous solution. The results indicated that the adsorption of Ni(II), Cd(II) and Pb(II) ions on the surface of the adsorbent was increased with increasing solution pH. The experimental data were analyzed using the Langmuir and Freundlich equations. Correlation coefficients were determined by analyzing each isotherm. It was found that the Langmuir equation showed better correlation with the experimental data than the Freundlich. According to the parameters of the Langmuir isotherm, the maximum adsorption capacity of NH2-MCM-41 for Ni(II), Cd(II) and Pb(II) was found to be 12.36, 18.25 and 57.74 mg/g, respectively. The kinetic data of adsorption reactions and the evaluation of adsorption equilibrium parameters were described by pseudo-first-order and pseudo-second-order equations. The synthesized solid sorbents were characterized by Fourier transform infrared (FT-IR) spectrometry, X-ray diffraction (XRD), scanning electron microscopy (SEM) and nitrogen sorption measurements.  相似文献   

20.
Silica gel has been modified by silylation with 3‐mercaptopropyltrimethoxysilane followed by graft polymerization of dimethylacrylamide and (N,N‐bis‐carboxymethyl)amino‐3‐allylglycerol‐co‐dimethylacrylamide, synthesized via the reaction of allyl glycidyl ether with iminodiacetic acid. The sorbent, poly(AGE/IDA‐co‐DMAA)‐grafted silica gel, has been characterized by FTIR, elemental analysis, thermogravimetric analysis (TGA), FT‐Raman, and scanning electron microscopy and studied for the preconcentration and determination of trace amounts of Cu(II) ion in environmental water samples. The optimum pH value for quantitative sorption of Cu(II) in batch mode was 5.5 and desorption was achieved, using 0.5 mol L?1 nitric acid. The sorption capacity of functionalized sorbent is 32.3 mg g?1. The chelating sorbent was reused for 15 sorption–desorption cycles without any significant change in sorption capacity. The profile of copper uptake by the sorbent reflected good accessibility of the chelating sites in the poly(AGE/IDA‐co‐DMAA)‐grafted silica gel. Scatchard analysis demonstrated homogeneous nature of binding sites. The equilibrium adsorption data of Cu(II) on modified sorbent were analyzed by Langmuir, Freundlich, Temkin, and Redlich–Peterson models. Based on equilibrium adsorption data, the Langmuir, Freundlich, and Temkin constants were determined as 0.0665, 4.26, and 8.34, respectively, at pH 5.5 and 20°C. Adsorption isotherms were analyzed at different temperatures to obtain free energy, enthalpy, and entropy of adsorption. The method was applied for Cu(II) determination in sea water samples. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号