首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A previous lectin binding study demonstrated the presence of high molecular-mass mucin-like glycoproteins (HMGP) on the surface of hamster tracheal surface epithelial (HTSE) secretory cells (Proc. Natl. Acad. Sci. USA 1987;84:9304). In the present study, we intended to isolate and characterize these HMGP from the plasma membrane of the primary HTSE cells and then to determine whether or not these membrane HMGP are Muc-1 mucins, a type of mucins originally discovered on the surface of some carcinomas. A subcellular fraction enriched with the plasma membrane was obtained using a sucrose density gradient centrifugation. This fraction contained high molecular-mass glycoconjugates which were excluded from Sepharose CL-4B gel. Biochemical characterization of these glycoconjugates revealed the following characteristics: (1) susceptibility to both pronase and mild alkaline treatments, but totally resistant to proteoglycan-digesting enzymes; (2) partitioning in the detergent phase of Triton X-114 and resistance to digestion by phosphatidylinositol phospholipase C or D; (3) a buoyant density of 1.5 g/ml based on CsCl density gradient centrifugation; (4) polydispersity in terms of both size and charge density; and (5) lack of immunoreactivity with an anti-Muc-1 mucin antibody. We conclude that the plasma membrane of HTSE cells at confluence contains HMGP, which seem to be the integral membrane proteins but different from Muc-1 mucins, and that these membrane HMGP appear to share some similarities with secreted mucins in terms of size and charge.  相似文献   

2.
Monoclonal antibodies (MoAbs) that selectively identify Muc-1 core protein (MoAbs DF3-P, VU-4H5) determinants were used to identify the Muc-1 glycoform present on 7 multiple myeloma (MM) cell lines, 5 MM patient plasma cells, 12 MM patient B cells, as well as 32 non-MM cell lines and normal hematopoietic cells. Flow cytometry studies demonstrated that all MM cell lines, MM patient plasma cells, and MM patient B cells expressed Muc-1 core protein epitopes. Circulating B cells from 4 normal donors also expressed Muc-1 core protein. In contrast, Muc-1 core protein was absent on 28 of 32 non-MM neoplastic cell lines, 17 of which expressed Muc-1. Splenic and tonsillar B cells, CD34(+) stem cells, resting T cells, and bone marrow plasma cells obtained from normal donors both lacked Muc-1 glycoforms. We next studied the effects of estrogen, progesterone, and glucocorticoid receptor agonists and antagonists on Muc-1 expression, because consensus sequences for the response elements of these steroids are present on the Muc-1 gene promoter. These studies showed that dexamethasone (Dex) induced Muc-1 expression on MM cell lines, as determined by both flow cytometry and Western blot analyses. Dex also induced upregulation of Muc-1 on prostate and ovarian cancer cell lines. Time and dose-response studies demonstrated that Dex induced maximal cell surface Muc-1 expression by 24 hours at concentrations of 10(-8) mol/L. Dex induced Muc-1 upregulation could be blocked with a 10-fold excess of the glucocorticoid receptor antagonist RU486, confirming that Dex was acting via the glucocorticoid receptor. No changes in Muc-1 expression were observed on MM cells treated with estrogen and progesterone receptor agonists and antagonists or with RU486. These studies provide the framework for targeting Muc-1 core protein in vaccination and serotherapy trials in MM. In addition, the finding that Muc-1 expression on MM cells can be augmented by Dex at pharmacologically achievable levels suggests their potential utility in enhancing treatments targeting Muc-1 in MM.  相似文献   

3.
Mucins are the structural components of the mucus gels that protect the respiratory, gastrointestinal, and reproductive tracts. These polydisperse glycoproteins (250,000 to 20,000,000 D) are approximately 80% carbohydrate on a mass basis and have a high intrinsic viscosity due to their large size and extreme hydrophilicity. Mucin oligosaccharides, the structures responsible for this hydrophilicity, are heterogeneous in size and structure but are chiefly O-linked, i.e., they initiate from N-acetylgalactosamine residues attached to threonine and serine residues of the polypeptide backbone. Our understanding of the structure of mucins has advanced rapidly in the last few years with the isolation and sequencing of cDNA clones that encode mucin polypeptide backbones. All currently well-characterized mucins have been found to contain extended arrays of tandemly repeated peptides rich in potential O-glycosylation sites. Less is known about the unique sequences that flank the tandem repeat arrays of secretory mucins, but currently available information indicates that these flanking regions contain cysteine-rich stretches that participate in mucin oligomer formation. Thus, secretory mucins appear to consist of oligomers containing heavily glycosylated domains flanked by unique sequences required for polymerization. Progress has also been made in characterizing the genes that encode mucins. At least four human mucin genes are known at present, although many others may remain to be discovered. Moreover, much work remains before we gain an understanding of the mechanisms involved in the expression of mucin genes and their tissue-specific regulation.  相似文献   

4.
Sialic acid acceptors of Trypanosoma cruzi are abundant mucin-like glycoproteins linked to the parasite membrane by a glycosylphosphatidyl inositol (GPI) anchor. They are heterogeneous and variable in different parasite stages. The protein portion of these mucins contains many threonine residues, and is thought to be encoded by a heterogeneous gene family. To investigate whether the high degree of heterogeneity in the mucin gene family is responsible for the diversity of mucins expressed on the parasite surface, we have studied the expression of mucin genes in several developmental stages of T. cruzi. We have found that mucins are expressed in all parasite stages. By using conserved sequences at 3' end of translated sequences of the gene family and the splice leader sequence, we have isolated 120 mucin-like cDNAs by RT-PCR from epimastigote and trypomastigote mRNAs. All transcribed genes contain conserved 5' and 3' regions, which code for the signal peptide, the sequence for GPI anchor addition, and a conserved domain rich in threonine residues. The internal portions of these genes are highly variable in size and sequence, and can be grouped in two major categories. One group contains KP(1-2)T(6-8) repeats, a motif found in mammalian mucins in the central region. This group is expressed preferentially in the trypomastigote forms ready to be released from the infected mammalian cell. The other has highly variable sequences in the central portion, and is expressed in all parasite stages. Because the number of synonymous substitutions is equivalent to the non-synonymous substitutions in the second group, they are probably evolving neutrally. On the other hand, the KP(1-2)T(6-8) containing genes have more synonymous substitutions and are most likely under a strong selective pressure. We propose that the group of KP(1-2)T(6-8) motif corresponds to the highly glycosylated mucins of the trypomastigote stages. In the other group proteolysis may remove the central domain yielding small mucins, such as the mucins found in insect derived stages of T. cruzi.  相似文献   

5.
Mucins secreted from the gastrointestinal epithelium from the basis of the adherent mucus layer which is the host's first line of defense against invasion by Entamoeba histolytica. Galactose and N-acetyl-D-galactosamine residues of mucins specifically inhibit binding of the amebic 170 kDa heavy subunit Gal-lectin to target cells, an absolute prerequisite for pathogenesis. Herein we characterized the secretory mucins isolated from the human colon and from three human colonic adenocarcinoma cell lines: two with goblet cell-like (LS174T and T84) and one with absorptive cell-like morphology (Caco-2). By Northern blot analysis the intestinal mucin genes MUC2 and MUC3 were constitutively expressed by confluent LS174T and Caco-2 cells, whereas T84 cells only transcribed MUC2 and not MUC3 mRNA. 3H-glucosamine and 3H-threonine metabolically labeled proteins separated as high M, mucins in the void (Vo > 10(6) Da) of Sepharose-4B column chromatography and remained in the stacking gel of SDS-PAGE as depicted by fluorography. All mucin preparations contained high amounts of N-acetyl-glucosamine, galactose, N-acetyl-galactosamine, fucose and sialic acid, saccharides typical of the O-linked carbohydrate side chains. Mucin samples from the human colon and from LS174T and Caco-2 cells inhibited E. histolytica adherence to chinese hamster ovary cells, whereas mucins from T84 cells did not. These results suggest that genetic heterogeneity and/or posttranslational modification in glycosylation of colonic mucins can affect specific epithelial barrier function against intestinal pathogens.  相似文献   

6.
Mucin gene expression in ovarian cancers   总被引:1,自引:0,他引:1  
Ovarian cancer is a highly lethal disease with metastases present in the majority of patients at the time of diagnosis. The molecular mechanisms underlying the metastatic process of this cancer are not well understood. One family of cell-associated and secreted glycoproteins, the mucin glycoproteins, has been implicated in events leading to metastasis of several epithelial cancers including gastrointestinal and lung cancers. The purpose of this study was to characterize mucin gene expression in ovarian cancers and relate expression to tumor histology, stage, and patient survival. RNA was isolated from 29 epithelial ovarian cancers, 1 neuroendocrine carcinoma, 3 mixed mesodermal tumors, and two transformed, yet nonmalignant, ovarian epithelial cell lines. The expression of mucin genes, MUC1, 2, 3, 4, 5AC and 5B, was determined by northern analyses. Epithelial ovarian cancers expressed several mucins including MUC1, 2, 4, and 5AC; MUC3 and 5B were rarely expressed. In contrast, the transformed nonmalignant ovarian epithelial cell lines expressed only MUC1 and 5AC. Although there was no correlation of mucin expression with tumor histology, there was a significant decrease in expression of MUC3 and MUC4 with increasing cancer stage (P < 0.05). In addition, a trend toward improved patient survival occurred with increased expression of MUC4. These observations suggest a relationship between mucin gene expression and the metastatic process in epithelial ovarian cancers. Additional investigation of MUC3 and MUC4 in ovarian cancers may lead to new approaches for early detection and therapy.  相似文献   

7.
Epithelial cells are important target cells for coronavirus infection. Earlier we have shown that transmissible gastroenteritis coronavirus (TGEV) and mouse hepatitis coronavirus (MHV) are released from different sides of porcine and murine epithelial cells, respectively. To study the release of these viruses from the same cells, we constructed a porcine LLC-PK1 cell line stably expressing the recombinant MHV receptor cDNA (LMR cells). The MHV and TGEV receptor glycoproteins were shown by immunofluorescence to appear at the surface of the cells and to be functional so that the cells were susceptible to both MHV and TGEV infection. Both coronaviruses entered polarized LMR cells only through the apical surface. Remarkably, while the cells remained susceptible to TGEV for long periods, infectability by MHV decreased with time after plating of the cells onto filters. This was not due to a lack of expression of the MHV receptor, since this glycoprotein was still abundant on the apical surface of these cells. TGEV and MHV appeared to exit LMR cells from opposite sides. Whereas TGEV was released preferentially at the apical membrane, MHV was released preferentially at the basolateral surface. These results show that vesicles containing the two coronaviruses are targeted differently in LMR cells. We propose that the viruses are sorted at the Golgi complex into different transport vesicles that carry information directing them to one of the two surface domains. The apical release of TGEV and the basolateral release of MHV might be factors contributing to the difference in virus spread found between TGEV and MHV in their respective natural hosts, the former causing mainly a localized enteric infection, the latter spreading through the body to other organs.  相似文献   

8.
Plasmids encoding the amino-terminal region of porcine submaxillary mucin were modified by site-specific mutagenesis to assess the roles of individual half-cystine residues in the assembly of disulfide-linked multimers of mucin. COS-7 cells with the plasmid containing C1199A expressed primarily monomers, suggesting that half-cystine 1199 in the D3-domain is involved in forming mucin multimers. This residue is in the sequence C1199SWRYEPCG, which is highly conserved in the D3-domain of other secreted mucins and human prepro-von Willebrand factor. In contrast, cells with the plasmid containing C1276A expressed trimers like those with unmutated plasmid, suggesting that half-cystine 1276 is not involved in formation of disulfide-bonded multimers. The roles of the half-cystines in the CGLCG motifs in the assembly of disulfide-bonded multimers of mucin were also assessed. Cells with plasmids in which both half-cystines in the motif in the D1- or D3-domain of mucin are replaced by alanine expressed proteins that were poorly secreted, suggesting that these mutations impair normal folding of the expressed proteins. A plasmid with a mutant D1-domain motif expressed monomers, whereas one with a mutant D3-domain motif expressed monomers and trimers. However, the trimers expressed by the latter plasmid were assembled in non-acidic compartments, as judged by expression studies in the presence of monensin, which inhibits trimer formation by unmutated plasmid, but not by the mutant plasmid. These results suggest that the CGLCG motif in the D1-domain is required for multimerization in the trans-Golgi complex. However, the CGLCG motif in the D3-domain appears to prevent formation of mucin multimers in non-acidic compartments of the cell. Plasmids encoding the D1- and D2-domains, the D1- and D3-domains, or only the D3-domain also expressed oligomers in the presence of monensin, suggesting that the three D-domains must be contiguous to avoid multimerization in non-acidic compartments. It is possible that these motifs in mucins are engaged in the thiol-disulfide interchange reactions during the assembly of disulfide-bonded multimers of mucin.  相似文献   

9.
Exposure for 24 h of mucus-secreting HT-29 cells to the sugar analogue GalNAc-alpha-O-benzyl results in inhibition of Galbeta1-3GalNAc:alpha2,3-sialyltransferase, reduced mucin sialylation, and inhibition of their secretion (Huet, G., I. Kim, C. de Bolos, J.M. Loguidice, O. Moreau, B. Hémon, C. Richet, P. Delannoy, F.X. Real., and P. Degand. 1995. J. Cell Sci. 108:1275-1285). To determine the effects of prolonged inhibition of sialylation, differentiated HT-29 populations were grown under permanent exposure to GalNAc-alpha-O-benzyl. This results in not only inhibition of mucus secretion, but also in a dramatic swelling of the cells and the accumulation in intracytoplasmic vesicles of brush border-associated glycoproteins like dipeptidylpeptidase-IV, the mucin-like glycoprotein MUC1, and carcinoembryonic antigen which are no longer expressed at the apical membrane. The block occurs beyond the cis-Golgi as substantiated by endoglycosidase treatment and biosynthesis analysis. In contrast, the polarized expression of the basolateral glycoprotein GP 120 is not modified. Underlying these effects we found that (a) like in mucins, NeuAcalpha2-3Gal-R is expressed in the terminal position of the oligosaccharide species associated with the apical, but not the basolateral glycoproteins of the cells, and (b) treatment with GalNAc-alpha-O-benzyl results in an impairment of their sialylation. These effects are reversible upon removal of the drug. It is suggested that alpha2-3 sialylation is involved in apical targeting of brush border membrane glycoproteins and mucus secretion in HT-29 cells.  相似文献   

10.
Human Tamm-Horsfall glycoprotein (T-H), first described as the major urinary glycoprotein, is a glycosylphosphatidyl-inositol (GPI)-anchored membrane protein which mainly resides at the luminal face of cells of the thick ascending limb of Henle's loop (TAL) and early distal convoluted tubules of nephron. Since no human renal cell-line producing T-H is available, T-H cDNA was transfected in HeLa cells and a cell line was selected in which 95% of the cells stably expressed T-H, in order to elucidate the biosynthesis, mechanisms regulating the transport of T-H along the exocytic pathway, exposure at the cell surface and release in soluble form. Treatment of cells with an exogenous reducing agent results in a drastic delay in the conversion from precursor to mature T-H. Since the accumulating T-H-precursor carries glycans not yet processed by Golgi-mannosidases, we propose that the formation of a correct set of intrachain disulphide bonds is required for T-H exit out the endoplasmic reticulum. Even the treatment of cells with an inhibitor of GPI-anchor biosynthesis results in an intracellular accumulation of T-H precursor, loss of T-H localization into Golgi apparatus and reduced surface exposure. These results indicate that the GPI-anchor addition is necessary for T-H delivery to the cell-surface. The release rate of new synthesized T-H shows an initial lag time very likely depending on the time required for T-H surface exposure. A portion of released T-H appears to contain ethanolamine, a component of GPI anchor, indicating that, at least in HeLa cells, a GPI-specific phospholipase contributes to the T-H release. Exposure of cells to monensin and brefeldin A results in a loss of accumulation of T-H in the Golgi perinuclear region and a reduced delivery to the cell surface. Under monensin treatment an intermediate T-H form non-exposed at the cell surface is released in the medium, indicating that a soluble T-H may be produced inside the cell under conditions that alter the Golgi apparatus. If such an event occurs in polarized kidney cells, a T-H release from the basolateral face may be postulated, inasmuch as the GPI-anchor is an apical sorting signal. Since T-H is a powerful autoantigen, the accumulation of soluble T-H in the interstitium of TAL may cause the formation of immunocomplexes.  相似文献   

11.
A colorimetric method was used on water-soluble mucin extracted from mucosal scrapings and contents of the caecum and the colon of five germ-free (GF) rats and five heteroxenic (HE) rats harbouring a human flora (GF rats associated with a human flora). These rats were fed on a diet containing either 100 g sucrose/kg or 100 g inulin/kg. Histological stains, periodic acid-Schiff, alcian blue pH 2.5 and alcian blue pH 0.5 were used to discriminate between neutral, acidic and acidic sulphated mucins respectively. Spectrocolorimetric assays led to a calculated absorbance value for 1 mg of the initial mucin extract. Each mucin type was compared between treatments. The caecal contents of GF rats contained more acidic mucin than sulphomucin, which was present in the same proportion as neutral mucin. Their colonic contents contained more acidic mucins than sulphomucin, which in turn was more abundant than neutral mucin. Their caecal mucosa mucin distribution differed from that of the contents: very little acidic mucin was present and neutral and sulphomucin proportions were of the same order of magnitude. Inulin increased the amount of neutral mucin in the caecal contents and of sulphated mucins in the colonic contents and increased the amounts of neutral and acidic mucins in the caecal mucosa. Mucin distribution in the HE rats was very different from that in the GF rats: the caecal contents contained a high proportion of acidic mucins and very little sulphomucin. The same distribution of mucins was observed in the colonic contents. The caecal mucosa contained less acidic mucin and more sulphomucin than the caecal contents. Inulin decreased acidic mucins and increased sulphated mucins in the caecal contents and increased neutral and sulphated mucins in the colonic contents. Inulin increased sulphomucin in the caecal mucosa and decreased acidic mucin in the caecal and colonic mucosas. The very low amount of mucin that was recovered in the colonic mucosa suggests that, in the presence of the bacterial flora and associated with inulin in the diet, mucin was extensively released from the mucosa to the colonic lumen. This might be related to the bacterial metabolites produced.  相似文献   

12.
In this review the main characteristics, i.e., structure, function and gene expression, of the different mucins are discussed. Mucin-type molecules consist of a core protein moiety (apomucin) where a number of carbohydrate chains are attached to serines and threonines by glycosidic bonds. O-linked carbohydrates form up to 80% of the molecule and the length of the glucidic side chains varies from one to more than 20 residues. At least eight mucin-like genes have been isolated so far, and the main characteristic is the presence of a central domain composed of a variable number of "tandem repeats". The sequence homology of the central domain among the different members of the mucin-type family is limited, indicating that this internal domain is unique for each mucin. Thanks to the integrated results of genetic, immunological and biochemical studies, it is now possible to identify eight apomucin genes, namely MUC1, MUC2, MUC3, MUC4, MUC5AC, MUC5B, MUC6 and MUC7. MUC1 is the best characterized mucin and it is expressed on the apical surface of most polarized epithelial cells. The MUC1 gene has been cloned and sequenced. The MUC2 gene encodes a typical secretory gel-forming mucin which represents the predominant form in human intestinal and colon tissues. Another intestinal mucin is MUC3. The MUC4, MUC5AC and MUC5B genes have been isolated from a bronchial tissue cDNA library. The MUC4 and MUC5AC genes are mainly expressed in the respiratory tract, in gastric and reproductive mucosa, while MUC5B is highly detectable only in the bronchial glands. The MUC6 gene is expressed by gastric tissue and, recently, MUC7 has been cloned and sequenced using a salivary cDNA library.  相似文献   

13.
Modeling Salmonella-epithelial cell interaction in vitro has led to the realization that epithelial cells are crucial in orchestrating neutrophil (PMN) responses, in part by stimulating basolateral release of epithelial chemokines, including IL-8. However, such basolaterally released chemokines, while likely important in orchestration of PMN movement across the subepithelial matrix, are unlikely to be responsible for the final step of transepithelial migration of PMN and entry into the apical compartment. We now show that S. typhimurium attachment to T84 cell apical epithelial membranes induces polarized apical secretion of a pathogen-elicited epithelial chemoattractant (PEEC) bioactivity. Experiments employing semipurified PEEC indicate that it is released in a polarized apical fashion and is sufficient to explain the observed final step of transepithelial migration of PMN induced by Salmonella-apical membrane interaction. By preliminary physical characterization and profiles of PMN activation, PEEC appears to be a novel PMN chemotactic bioactivity. This 1- to 3-kDa nominal molecular mass chemokine-like bioactivity directly stimulates PMN via a pertussis toxin-sensitive receptor and elicits a Ca2+ signal. While these latter features are shared by most other chemokines, analysis of PEEC-elicited PMN activation reveals that, unlike these other agonists, PEEC, even at saturating concentrations, elicits chemotactic activity in the absence of stimulation of superoxide production and/or release of primary and/or secondary granules. These data suggest that the apically released PEEC activity appears to represent a novel epithelial-derived chemoattractant that directs PMN movement across epithelial monolayers.  相似文献   

14.
The lactating mammary gland of the African elephant (Loxodonta africana) has been studied with a panel of morphological techniques focusing on (1) the functional changes during the secretory process, (2) proliferative process [by application of proliferating cell nuclear antigen (PCNA) immunohistochemistry] and apoptotic phenomena [by use of the TUNEL technique] in the individual lobules, and (3) components of milk and milk-fat-globule membrane. In the lactating gland, the lobules are variably differentiated; within a lobule, however, the alveoli are usually similarly differentiated. The morphology of their alveoli suggests a classification of the lobules into types 1-3. Lobules of type 1 are composed of immature tubular alveoli with mitotic figures and numerous PCNA-positive nuclei; advanced type 1 alveoli contain abundant glycogen and specific secretory granules. Lobules of type 2 are further subdivided. In type 2a lobules, the epithelial cells of the alveoli form tall apical protrusions, which in part are occupied by small lipid droplets and which are pinched off in an apocrine fashion. The number of lysosomes varies considerably. Type 2b is the most common type, with striking basal membrane foldings, abundant rough endoplasmic reticulum cisterns, large Golgi apparatus, numerous mitochondria, lipid droplets, and protein vesicles with 30- to 90-nm-wide casein micelles. The lipid droplets are pinched off with minimal amounts of cytoplasm. Type 2c is composed of alveoli with a cuboidal epithelium and few signs of secretory activity. Increasing expression of peanut-agglutinin-binding sites parallels the maturation and differentiation of the glandular cells. Type 3 lobules are marked by numerous TUNEL-positive nuclei and large lipid droplets and are apparently degenerating structures. Cytokeratin (CK) 14 is usually present in the myoepithelial cells; CK 19 and CK 7 mark ductal and immature alveolar epithelia. Milk protein content varies between 2.6% and 6.3%, and casein micelles range from 35 to 90 nm in diameter. The diameter of intra-alveolar milk fat globules ranges from 5 to 25 micrometer and the membranes bear a filamentous surface coat composed of membrane-anchored mucins; gel-electrophoretic analysis of these mucins from different individuals demonstrates the presence of mucin MUC 1, which is expressed with considerable genetic heterogeneity.  相似文献   

15.
To test whether glycosyl phosphatidylinositol-linked T-cadherin is a component of cell junctions like classical cadherins, we have examined its distribution and targeting in polarized epithelial cells. In vivo, T-cadherin was detected on the apical cell surface of the chick intestinal epithelium. In cultures of transfected Madin-Darby canine kidney cells, T-cadherin was also expressed apically, whereas classical N-cadherin resided basolaterally. Both cadherins were directly targeted to their respective membrane domains. Mutant proteins were expressed in Madin-Darby canine kidney cells to identify the regions responsible for differential cadherin localization. NDeltacyt, an N-cadherin cytoplasmic domain deletion mutant, was stably distributed basolaterally. This mutant was transported to both the apical and basolateral membrane compartments, followed by preferential removal from the apical surface. T-NDeltacyt, a T-cadherin mutant with the N-cadherin cytoplasmic domain deletion, was localized basolaterally, whereas N-TGPI, a GPI-anchored N-cadherin mutant, resided at the apical domain. The T-cadherin carboxyl-terminal 76 amino acids contain the apical targeting signal and include the signal for GPI anchor attachment. Basolateral localization of N-cadherin is achieved through targeting signals in the cytoplasmic domain. Thus, GPI-linked T-cadherin is not a component of cell junctions, consistent with a function as a recognition rather than a cell adhesion molecule.  相似文献   

16.
Mucins are highly expressed in many different human cancers and numerous murine monoclonal antibodies (MAbs) to human mucins, particularly Mucin 1 (MUC1), have been produced. However, no such antibodies to murine mucin 1 (muc1) have been described and we now describe 6 different antibodies produced to murine muc1 and to human MUC1 cytoplasmic tail, either by immunising rats, or muc1 o/o mice with synthetic peptides or a fusion protein composed of glutathione-s-transferase (GST) linked to the tandem repeat region of muc1. The antibodies to both the extracellular tandem repeat region and to the cytoplasmic tail were found to react with mucin-containing murine tissues such as breast, stomach, colon, ovary, kidney and pancreas, and the staining patterns were similar to those found in humans. The reagents reacted specifically with muc1 peptides and tissues; however, some cross reactivity with other mucin-derived peptides was noted, particularly those containing the amino acid sequence TSS. Three different epitopes (TSS, TAVLSGTS and LSGTSSP) of the M30, M70 and MFP25 MAbs were detected. Of interest was the finding that some of the antibodies reacted with murine lymphocytes; it was not clear whether these reactions were due to mucin 1 on mouse lymphocytes (MUC1 was considered to be absent from human lymphocyte), or due to cross reaction with a sialic adhesion molecule on lymphocytes. The antibodies should prove valuable reagents when studying differentiation and expression in murine glandular tissues and the ontogeny of mucin-secreting tumours.  相似文献   

17.
Retinal pigment epithelial (RPE) cells apically polarize proteins that are basolateral in other epithelia. This reversal may be generated by the association of RPE with photoreceptors and the interphotoreceptor matrix, postnatal expansion of the RPE apical surface, and/or changes in RPE sorting machinery. We compared two proteins exhibiting reversed, apical polarities in RPE cells, neural cell adhesion molecule (N-CAM; 140-kD isoform) and extracellular matrix metalloproteinase inducer (EMMPRIN), with the cognate apical marker, p75-neurotrophin receptor (p75-NTR). N-CAM and p75-NTR were apically localized from birth to adulthood, contrasting with a basolateral to apical switch of EMMPRIN in developing postnatal rat RPE. Morphometric analysis demonstrated that this switch cannot be attributed to expansion of the apical surface of maturing RPE because the basolateral membrane expanded proportionally, maintaining a 3:1 apical/basolateral ratio. Kinetic analysis of polarized surface delivery in MDCK and RPE-J cells showed that EMMPRIN has a basolateral signal in its cytoplasmic tail recognized by both cell lines. In contrast, the basolateral signal of N-CAM is recognized by MDCK cells but not RPE-J cells. Deletion of N-CAM's basolateral signal did not prevent its apical localization in vivo. The data demonstrate that the apical polarity of EMMPRIN and N-CAM in mature RPE results from suppressed decoding of specific basolateral signals resulting in randomized delivery to the cell surface.  相似文献   

18.
Muc-1 is a heavily O-glycosylated, type 1 membrane glycoprotein present on the surface of polarized secretory uterine epithelial cells. Previous studies have shown that treatment of ovariectomized mice with 17-beta-estradiol (E2) strongly induces Muc-1 mRNA expression in an estrogen receptor (ER)-mediated fashion in the uterus. In this study, the 5.4 kb Muc-1 gene promoter has been isolated from a mouse genomic library and the proximal 1.85 kb region has been sequenced. Sequence analysis revealed the presence of one potential full estrogen response element (ERE) (GCTCGCGGTGACC) located at -748 to -735 bp in the Muc-1 promoter and several potential ERE half sites. Electrophoretic mobility shift assays (EMSA) showed that neither ERalpha nor ERbeta bind efficiently to this sequence. Transient cotransfection assays using constructs containing various deletion mutations of the 5' Muc-1 flanking sequences showed that E2 had no direct stimulation on promoter-driven reporter in NMuMG cells or primary mouse uterine epithelial cells, but did stimulate a consensus ERE CAT-reporter gene activity. In addition, E2-treatment of Weg-ER cells, a mouse uterine epithelial cell line stably expressing human ERalpha, did not restore endogenous Muc-1 expression or activate Muc-1 promoter-driven CAT activity. These results indicate that regions of the Muc-1 gene promoter within -1838 to +43 bp do not respond to E2 and ER stimulation and that ER alone is not sufficient to restore Muc1 gene expression. Deletion analyses also revealed that the sequence between -73 and +43 bp of the Muc-1 promoter is the minimal promoter region required for maximal Muc-1 promoter activity. Collectively, these results demonstrate that ER does not directly regulate the 1.85 kb murine Muc-1 gene promoter. Therefore, E2 control of uterine Muc-1 gene expression is likely to be indirect, i.e. mediated by stromal cell-derived factors.  相似文献   

19.
Transmembrane isoforms of the neural cell adhesion molecule, N-CAM (N-CAM-140 and N-CAM-180), are vectorially targeted from the trans-Golgi network to the basolateral domain upon expression in transfected Madin-Darby canine kidney cells (Powell, S. K., Cunningham, B. A., Edelman, G. M., and Rodriguez-Boulan, E. (1991) Nature 353, 76-77). To localize basolateral targeting information, mutant forms of N-CAM-140 were constructed and their surface distribution analyzed in Madin-Darby canine kidney cells. N-CAM-140 deleted of its cytoplasmic domain shows a non-polar steady state distribution, resulting from delivery from the trans-Golgi network to both the apical and basolateral surfaces. This result suggests that entrance into the basolateral pathway may occur without cytoplasmic signals, implying that apical targeting from the trans-Golgi network is not a default mechanism but, rather, requires positive sorting information. Subsequent construction and analysis of a nested set of C-terminal deletion mutants identified a region of 40 amino acids (amino acids 749-788) lacking tyrosine residues required for basolateral targeting. Addition of these 40 amino acids is sufficient to restore basolateral targeting to both the non-polar cytoplasmic deletion mutant of N-CAM as well as to the apically expressed cytoplasmic deletion mutant of the p75 low affinity neurotrophin receptor (p75(NTR)), indicating that this tyrosine-free sequence is capable of functioning independently as a basolateral sorting signal. Deletion of both cytoplasmic and transmembrane domains resulted in apical secretion of N-CAM, demonstrating that the ectodomain of this molecule carries recessive apical sorting information.  相似文献   

20.
Mucins, best known as the major constituent of mucus, are a family of highly glycosylated, high molecular weight (> or = 200 kDa) glycoproteins present on the surface of human epithelial cells. MUC1 has the features of an integral membrane protein. It has an extracellular tandem repeat domain that forms the major part of the core protein, and results in a highly repetitive structure, which is extremely immunogenic. In the protein there is also a proteolytic cleavage site reported in the proximal extracellular domain. The secreted form of MUC1 lacks the cytoplasmic tail, but it is not clear whether this results from alternative splicing or proteolysis and release of the free extracellular domain. The locus of the MUC1 gene is on band 21 of the long arm of chromosome 1 (1q21). Anti-adhesion properties of this mucin are probably the result of the unique structure of the molecule. In mouse uterine epithelium, the homologue MUC1 is regulated with reduced expression in the implantation period, but in humans, expression is high during the peri-implantation period. MUC1 may inhibit the interaction between trophoblast and apical epithelium adhesion molecules at the time of implantation, giving the possibility of forming a uterine barrier for implantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号