共查询到17条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
薄壁管数控弯曲截面畸变的实验研究 总被引:5,自引:1,他引:5
截面畸变是薄壁管小弯曲半径数控弯曲成形容易出现的成形缺陷之一。文章采用实验法,研究了芯头个数、芯棒伸出量、弯曲角度、压块润滑状态、相对弯曲半径、材料等因素对截面畸变的影响;并提出了减小截面畸变的有效措施。结果表明,增加芯头个数与芯棒伸长量都能减小弯管的截面畸变,但两者都导致弯管壁厚减薄量增大;随着弯曲角度的增加,截面畸变越严重,相对弯曲半径越小,无芯棒与芯头支撑段弯管的截面畸变愈严重;在压块无润滑情况下,弯管的截面畸变和壁厚减薄量都小,并且在同等弯曲条件下,1Cr18Ni9Ti弯管的截面畸变小于LF2M弯管。 相似文献
6.
针对大直径薄壁管件数控弯曲成形工艺,假设管件质量的评价指标参数,即管件的最大壁厚变化率及最大截面畸变率为随机变量,在将该两个相关随机变量转化为独立随机变量的前提下,利用贝叶斯理论分析得到两个独立随机变量的正态分布特性。同时利用基于信噪比的多目标决策理论,得到以最优质量评价指标参数为中心,置信度1-α下的最佳质量评价参数球域。并基于质量评价指标参数与工艺参数的映射关系,通过神经网络映射得到工艺参数的优化区间。最后对Φ50 mm×1.0 mm×100 mm管件进行弯曲成形的实例计算,分析结果证明该方法具有良好的工程实用性和有效性。 相似文献
7.
薄壁管材的小弯曲半径数控弯曲成形十分困难,外侧壁厚减薄是弯管成形中的加工缺陷之一,对于钛合金薄壁管尤为严重。采用模拟与实验相结合的方法,对规格为58 mm×1.5 mm的CT20钛合金管材数控弯曲成形过程中弯曲段的壁厚减薄进行了研究,得到相对弯曲半径对壁厚减薄的影响规律。结果表明,CT20钛合金管材冷弯成形时的极限相对弯曲半径(R/D)为2。 相似文献
8.
为了揭示小弯曲半径高强不锈钢管数控绕弯成形机理,实现精确成形和有效控制的目的,基于ABAQUS有限元平台建立了小弯曲半径21-6-9高强不锈钢管数控绕弯成形全过程三维弹塑性有限元模型;研究了网格尺寸和质量放大因子对有限元模型计算精度和效率的影响,并从理论和实验方面验证了模型的稳定性和可靠性;分析了小弯曲半径高强不锈钢管数控绕弯全过程应力和应变以及对称平面和典型截面上的应力和应变分布的历史演变规律。获取了合理的网格尺寸和质量放大因子分别为0.6×0.6 mm和3000,以及全过程、对称平面和典型截面上的应力和应变分布规律。 相似文献
9.
《塑性工程学报》2019,(6)
针对Φ60 mm×1 mm的1Cr18Ni9Ti薄壁管进行推弯成形数值模拟和试验,研究了其1D弯曲半径推弯成形缺陷。讨论了管坯α坡口的大小、聚氨酯填块厚度和硬度、反推力大小以及润滑方式对推弯成形缺陷的影响。结果表明,α角增大,有利于弯管内侧材料的流动,减少弯管弯曲内侧起皱的风险;聚氨酯填块的厚度小、硬度不足,易引起弯管起皱与端口畸变;当反推力F_2增大到70 MPa时,弯管与模具间的摩擦力增大,管的弯曲内侧起皱;反推力F_2减小为20 MPa时,支撑弯管的内压不足,导致弯管失稳塌陷与端口畸变;对小弯曲半径管推弯成形采用差异化润滑,能抑制起皱和端口畸变。模拟结果与试验结果较为吻合。 相似文献
10.
薄壁管数控绕弯成形壁厚减薄的主要影响因素研究 总被引:1,自引:0,他引:1
针对薄壁圆管数控绕弯精确成形过程在多因素作用下容易出现外侧壁厚减薄的物理过程,基于Dynaform建立了数控绕弯三维有限元模型并验证了模型的可靠性.研究了材料参数、顶推装置、弯曲角度、相对弯曲半径、芯棒伸出量、芯头个数对管材数控绕弯成形外侧壁厚减薄的影响规律.结果表明:LF2M铝合金比1Cr18 Ni9Ti不锈钢减薄严重,但是截面畸变程度小于1Cr18Ni9Ti;相比尾部没有安装顶推装置的管坯,加装了顶推的弯管壁厚减薄率降低了大约5%;随着弯曲角度和弯曲半径的增大,减薄率也逐渐增大;芯棒伸长量和芯头个数也是影响减薄的重要因素,芯棒伸出越多,弯管壁厚减薄率越大,增加芯头也会增大减薄率. 相似文献
11.
12.
Currently requirements of thin-walled tube with small bending radius cause the defects such as wrinkling, overthinning and cross-section distortion more prone to occur in bending process. Based on the analysis of the forming characteristics by analytical and experimental methods, a complete 3D elastic-plastic FEM model of the process was developed using ABAQUS/Explicit code, including bending process, balls retracting and unloading process, and thus the plastic deformation characteristics with small bending radius were investigated. The main results show that: 1) The utmost deformation feature of the NC bending process is its continuous progressive deformation. 2) The occurring conditions of the defects such as wrinkling and tension instability in the process are obtained. The wrinkling is traditional on the double compressive stresses state and the tension instability is on the double tension stresses state. 3) The enhanced non-uniform deformation in thin-walled tube with small bending radius is demonstrated by comparing the stress/strains distributions under the 1.5D and lD bending conditions. 4) For lD small bending process, a new method-"stepped mandrel retraction" is proposed to improve the bending quality in experiment according to the FE simulation. The simulation results are verified by experiment. 相似文献
13.
薄壁铝合金管小弯曲半径数控弯曲是个多因素耦合、多模具约束下的复杂过程。提出以有限元模拟为基础,基于显著性的工艺参数优化方法,即采用析因因子设计分析工艺参数对成形质量,即最大壁厚减薄率和最大截面畸变变化率影响的显著性,获得影响显著的参数,即管与防皱模间间隙的最优值,并确定其他影响不显著的参数值,包括管与模具间的间隙和摩擦、芯棒伸出量和助推速度。结果应用于规格为d50mm×1mm×75mm和d70mm×1.5mm×105mm(管外径D0×管壁厚t0×弯曲半径R)的铝合金管弯曲,获得了合格的管件。 相似文献
14.
Effect of mandrel on cross section quality of thin-walled tube numerical controlled bending 总被引:7,自引:0,他引:7
The effect of mandrel with the structure of ball and socket on the cross section quality of thin-walled tube numerical controlled (NC) bending was studied by numerical simulation method, combined with theoretical analysis and experiment. Influencing factors of the mandrel include the count of mandrel heads, the diameter of mandrel and its position. According to the principle of NC tube bending, quality defects possibly produced in thinwalled tube NC bending process were analyzed and two parameters were proposed in order to describe the cross section quality of thin-walled tube NC bending. According to the geometrical dimension of tube and dies, the range of mandrel protrusion was derived. The finite element model of thin-walled tube NC bending was established based on the DYNAFORM platform, and key technological problems were solved. The model was verified by experiment. The effect of the number of mandrel heads, the diameter of mandrel and the protrusion length of mandrel on the cross section quality of thin-walled tube NC bending was revealed and how to choose mandrel parameters was presented. 相似文献
15.
Li Heng Yang He Zhan Mei Sun Zhichao Gu Ruijie 《International Journal of Machine Tools and Manufacture》2007,47(7-8):1164-1175
The thin-walled tube NC bending process is a much complex physical process with multi-factors coupling interactive effects. The mandrel is the key to improve bending limit and to achieve high quality. In this study, one analytical model of the mandrel (including mandrel shank and balls) has been established and some reference formulas have been deduced in order to select the mandrel parameters preliminarily, i.e. mandrel diameter d, mandrel extension e, number of balls n, thickness of balls k, space length between balls p and nose radius r. The experiment has been carried out to verify the analytical model. Based on the above analysis, a 3D elastic–plastic FEM model of the NC bending process is established using the dynamic explicit FEM code ABAQUS/Explicit. Thus, the influences of mandrel on stress distribution during the bending process have been investigated, and then the role of the mandrel in the NC precision bending process such as wrinkling prevention has been revealed. The results show the following: (1) Wrinkling in the tube NC bending process is conditional on membrane biaxial compressive stress state; the smaller the difference between the biaxial membrane stresses is, the more possibility of wrinkling occurs. (2) If the mandrels of larger sizes are used, it will cause the neutral axial to move outward and the difference between the in-plane compressive stresses to become more obvious, which may increase minimum wrinkling energy and anti-wrinkling ability. But the larger mandrel sizes make outside tube over-thinning. (3) When the mandrel extension length increases, the neutral axial will move outward and the difference between the biaxial compressive stresses becomes larger, but the significance is less than that of the mandrel diameter. The excessive extension will cause tube to over thin or even crack. (4) The significance of ball number's effect on the neutral axial position and difference between biaxial compressive stresses is between ones of mandrel diameter and mandrel extension. Increasing the ball number will enhance the thinning degree and manufacturing cost. The results may help to better understanding of mandrel role on the improvement of forming limit and forming quality in the process. 相似文献
16.
1 Introduction Thin-walled tube bending parts have been increasingly used in many industry fields such as aviation, aerospace and automobile for their easy satisfaction in light weight, high strength and low consuming. The numerical controlled(NC) rotar… 相似文献