首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
介绍了激光跟踪测量系统的结构.分析了激光跟踪测量系统利用目标反射镜和转镜的配合实现跟踪的原理,利用球坐标系、干涉测距实现坐标的原理,并对系统测量误差的产生原理及防止误差的方法进行了讨论,最后对激光跟踪测量系统的发展趋势做了展望.  相似文献   

2.
介绍激光跟踪仪精度校验方法。用激光跟踪仪与高精密立式加工中心比对来测量激光跟踪仪在IFM(干涉测量模式)模式下精度,为激光跟踪系统的验收提供依据,同时为激光跟踪仪误差补偿提供数据支持。  相似文献   

3.
围绕亚微弧度量级激光跟踪转镜的光束指向精度问题,提出空间正交光学系统安装误差的分析方法。基于矢量折射定理的光线追击法,建立棱镜安装误差的归一化数学模型,分析不同安装误差对光束指向精度的影响,实现光束指向误差的定量分析。棱镜Π_1相对y轴的安装倾斜大于0.08″会导致出射光垂直张角ρV误差达到0.21μrad,相对于x轴的安装倾斜大于0.2″会导致水平张角ρH误差达到0.5μrad;棱镜Π_2相对z轴的安装倾斜大于0.2″会导致水平张角ρH误差达到0.22μrad,而棱镜轴承的安装误差对光束指向精度的影响较小。研究结果为高精度光学跟踪系统设计提供了理论依据。  相似文献   

4.
通过介绍ETALON激光跟踪仪误差测量的基本原理与方法,用其对公司成形磨齿机产品YK73200伺服旋转轴C轴进行误差测量,并利用误差分离技术,生成空间六项分量误差报告,以帮助指导机床的安装与补偿,从而提高磨齿精度。  相似文献   

5.
介绍了一种测量隐藏特征和表面特征的激光跟踪仪探头(FaroRetroProbe)的结构和工作原理,详细分析了该探头的空心角锥棱镜误差、空心角锥棱镜和探针的对称性误差及平面反射镜的面形误差等主要误差及其对激光跟踪仪测量结果的影响,并针对性地指出提高激光跟踪仪测量精度的措施。  相似文献   

6.
孙长俐  刘红  王蔚生 《光学仪器》2014,36(3):189-193
鉴于激光波长相对固定的特性,采用一种新的测量激光光色性能测量方法,设计出基于单片机的手持式高精度激光光色性能测量系统。该系统可实现不同波长激光光色性能测量,通过系统初始化时波长输入来提取相应光谱三刺激值,而后进行参数计算。对测量系统进行了实验误差分析,由系统验证结果及误差分析表明,该系统可实现低成本制作,所述测量原理能完成对色空间坐标、光照度、色温等光色性能参数的高精度测量。  相似文献   

7.
柔性激光加工系统中的测量功能及其静态误差分析   总被引:6,自引:2,他引:4  
着重介绍了集成化柔性激光加工系统中测量功能的构成和工作原理 ,在此基础上分析和讨论了静态误差的来源以及补偿方法 ,并进行了测量试验  相似文献   

8.
激光精密跟踪测角误差分析与计算   总被引:1,自引:0,他引:1  
叙述了用四象限探测器进行激光精密跟踪测角的原理,并对其误差进行了分析和计算.  相似文献   

9.
激光跟踪仪测角误差补偿   总被引:1,自引:0,他引:1  
由于激光跟踪仪的角度测量精度直接影响仪器的测量精度,本文提出了用自准直仪结合多面棱体对跟踪仪金属圆光栅测角误差进行离散标定的方法。研究了基于谐波分析的误差补偿方法,取金属柱面圆光栅测角误差中幅值较大且相位基本不变的谐波分量建立了补偿模型,避免了最小二乘法不收敛的问题。分析了标定测角误差的不确定度,结果显示:水平测角精度补偿前后分别为1.60"和0.90",俯仰测角精度补偿前后分别为4.89"和0.91",精度分别提高了44%和81%,从角秒级提高到了亚角秒级。结果表明,提出的方法可为激光跟踪仪水平和俯仰轴系提供测角误差补偿,对类似测角系统的误差补偿也有参考价值。  相似文献   

10.
机载光电跟踪测量设备的目标定位误差分析   总被引:20,自引:22,他引:20  
光电跟踪和测量设备用于测量飞行器在空中的飞行轨迹,作为飞行器飞行性能的评价。随着现代技术的发展,对飞行器性能提出愈来愈高的要求,从而也对跟踪和测量飞行器飞行轨迹的光电跟踪和测量设备提出了相应的技术进步要求,特别是对其测量精度指标。如何做好和完善误差分析、误差分配和误差综合,成为研制更高性能的光电跟踪测量设备总体设计中的一个重要问题,贯穿从可行性论证、方案论证、方案设计、设计、制造、装调、直到试验等整个研制过程。就这一类设备中最为复杂的机载光电跟踪测量设备的目标定位误差(即3轴上的测量误差),通过建立从被测目标到地面中心测量站9个坐标系,进行31次线性变换,构造35个变量的统一测量方程;进行测量误差因素的分析和分配,以及用蒙特卡洛法来分析和计算系统的目标定位误差。  相似文献   

11.
激光跟踪仪精密跟踪系统的设计   总被引:1,自引:0,他引:1  
对激光跟踪仪的跟踪伺服控制系统进行了整体研究并给出了总体设计方案。针对跟踪目标的精密探测问题,研究了新型探测手段以及微弱光电信号的精细调理技术与数字滤波方法,使得脱靶量探测稳定性优于±2.0μm。针对跟踪角度精密测量问题,设计了圆光栅数据采集系统,实现了角度脉冲的细分、辨向与准确计数;基于谐波分析方法建立了跟踪过程中的误差补偿模型,将角度测量精度由3.5″提高到1.5″。建立了跟踪伺服电机的数学模型,分析了电流环在跟踪控制中的作用机理,提出了电流、速度、位置三闭环控制结构和复合跟踪控制策略。跟踪实验表明:系统最远跟踪距离不小于41.7m,跟踪速度不低于2.0m/s。该项技术还能为空间动态目标跟踪、激光通信等提供有益借鉴。  相似文献   

12.
为了实现复杂场景下激光跟踪仪跟踪恢复过程中合作目标靶球的检测,本文研究了基于深度学习的靶球检测方法。首先,分析靶球自身特点、应用环境及它在跟踪恢复过程中的作用,然后根据Faster R-CNN模型原理与跟踪恢复应用需求提出基于超特征与浅层高分辨率特征信息复用的改进方法生成新的融合特征图,并优化区域建议提取参数,协同解决图像中目标多尺度变化与小尺寸导致目标漏检率高的问题;同时提出一种基于强背景干扰的困难样本挖掘方法提高模型对外形颜色等与目标近似的干扰物识别能力,解决模型误检测率高的问题。最后,本文构建了目标靶球数据集并进行了对比训练与测试。测试实验结果表明:本文提出的基于强背景干扰困难样本挖掘方法的改进Faster R-CNN模型在目标多尺度、小尺寸检测,以及对复杂背景中相似干扰物的辨别能力都有提升,最终对测试集的检测精度达到了90.11%,能够满足激光跟踪仪跟踪恢复过程对合作目标靶球的视觉检测精度要求。  相似文献   

13.
激光跟踪仪的光电瞄准与定位系统   总被引:1,自引:0,他引:1  
考虑激光跟踪仪的光电瞄准与定位直接影响仪器的整体测量精度和使用性能,讨论了激光跟踪仪的光电瞄准和跟踪定位控制技术并提出了光电探测瞄准、信号调理采集、数字处理及智能跟踪伺服的系统整体技术方案。对系统关键部件进行选型,利用角锥棱镜和位敏探测器(PSD)作为光电探测核心,设计了探测光路和信号处理电路。研制了系统样机,搭建了目标位移量标准测试平台,对样机光电瞄准系统探测信号进行了测试。测试结果显示:采用该设计方案设计的激光跟踪仪样机的静态定位测量精度达到6μm,随机动态跟踪测量速度大于1m/s。结果表明:提出的方法可解决激光跟踪仪定位精度低、动态跟踪效果差等常见问题,可为研制高精度、大范围、大尺寸测量仪器提供技术参考。  相似文献   

14.
激光跟踪测量系统是目前最新型的便携式空间大尺寸坐标测量系统,利用激光干涉测长、精密测角及目标跟踪技术,可对任意点的空间位置进行实时跟踪测量。然而,目标反射器接收角度的大小严重影响了激光跟踪测量系统角度测量精度,为解决激光跟踪测量系统在动态测量中因角锥棱镜逆反射器接收角度范围限制而导致无法测量问题,研制开发了一种能使激光跟踪测量系统在动态条件下连续测量的角度自动校正装置。它主要由精密圆形导轨和角度方位自动调节机构组成,能使角锥棱镜在动态测量过程中始终指向激光跟踪测量系统,从而实现在动态条件下的连续工作。最后利用研制角度自动校正装置对激光跟踪测量系统进行了角度误差补偿实验,结果表明该装置使激光跟踪测量系统的水平角测量误差由34.69µm减小到9.71µm,垂直角测量误差由35.43µm减小到10.03µm,从而有效地提高了激光跟踪测量系统的角度测量精度。  相似文献   

15.
为了精确控制光电跟踪复合轴系统的快速反射镜,研究了快速反射镜的反射过程。推导出了快速反射镜镜子转动角度和反射光线转动角度之间的关系,描述了快速反射镜系统的控制方法和软件实现。以推导出的快速反射镜镜子转动角度和反射光线转动角度之间的关系为理论依据,建立了快速反射镜伺服控制系统,对快速反射镜系统进行了锁零实验和跟踪实验,并与母轴系统进行了对比。实验结果显示:快速反射镜在锁零时稳态精度小于1″,且响应快速;在跟踪时系统方位跟踪误差均方根为3.6″,俯仰跟踪误差均方根为8.7″,满足光电跟踪系统对跟踪速度和瞄准精度的要求。得到的结果表明,基于快速反射镜反射过程理论建立的快速反射镜伺服系统提高了激光发射系统的跟踪精度和响应速度。  相似文献   

16.
为了解决激光跟踪仪跟踪恢复过程中快速精确的获取伺服运动角度问题,提出了一种面向激光跟踪仪跟踪恢复的伺服运动角度计算方法。首先阐述了基于主动红外探测的激光跟踪仪跟踪恢复原理与合作目标靶球视觉目标检测特点,并分析了跟踪恢复过程中光轴视轴非共轴不平行问题所导致的伺服运动角度非线性变化问题;其次,构建了目标距离、目标像素偏差值与伺服运动角度关系的计算模型,完成了基于整定数据的模型参数整定;最后,开展了验证实验并进行了精度分析。实验结果表明,计算模型得到的跟踪恢复角度与实际跟踪恢复角度差值不大于0.007 7°,最大偏移距离误差小于2 mm,满足激光跟踪仪跟踪恢复的应用要求。  相似文献   

17.
激光跟踪仪测角误差的现场评价   总被引:6,自引:0,他引:6  
激光跟踪仪是基于角度传感和测长技术相结合的球坐标测量系统,其长度测量采用激光干涉测长方法,可直接溯源至激光波长,因此,激光跟踪仪的长度测量精度远高于角度测量精度,相对而言,测角误差就成为评价跟踪仪测量精度的重要指标。为了对现场测量激光跟踪仪的测角误差进行快速有效地评价,采用跟踪仪多站位对空间中测量区域内若干个被测点进行测量,与传统基于角度交汇原理的多站位冗余测量不同,利用各站位所观测的高精度测长值建立误差方程,并通过测长方向的矢量位移对跟踪仪测长误差进行约束,获得被测点三维坐标在跟踪仪水平角和垂直角方向上的改正值,以此来评价激光跟踪仪的测角误差。通过Leica激光跟踪仪AT901-LR进行了多站位测角误差评价实验,在现场测量条件下,跟踪仪水平和垂直方向测角误差约为0.003 mm/m(1σ),符合跟踪仪的测量误差特性。  相似文献   

18.
电容传感器激光焦点检测误差分析   总被引:1,自引:0,他引:1  
本文深和地研究了和分析了电容传感器探头形状与外轮廓尺寸检测精度的影响以及被检测件外形给传感器带来的误差。指出必须全面综合考虑电容传感器的工作状况,优化设计电容器传感器的动极板。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号