首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigates two methods of transforming intermittent wind electricity into firm baseload capacity: (1) using electricity from natural gas combined-cycle (NGCC) power plants and (2) using electricity from compressed air energy storage (CAES) power plants. The two wind models are compared in terms of capital and electricity costs, CO2 emissions, and fuel consumption rates. The findings indicate that the combination of wind and NGCC power plants is the lowest-cost method of transforming wind electricity into firm baseload capacity power supply at current natural gas prices (∼$6/GJ). However, the electricity supplied by wind and CAES power plants becomes economically competitive when the cost of natural gas for electric producers is $10.55/GJ or greater. In addition, the Wind-CAES system has the lowest CO2 emissions (93% and 71% lower than pulverized coal power plants and Wind-NGCC, respectively) and the lowest fuel consumption rates (9 and 4 times lower than pulverized coal power plants and Wind-NGCC, respectively). As such, the large-scale introduction of Wind-CAES systems in the U.S. appears to be the prudent long-term choice once natural gas price volatility, costs, and climate impacts are all considered.  相似文献   

2.
The economic viability of producing baseload wind energy was explored using a cost-optimization model to simulate two competing systems: wind energy supplemented by simple- and combined cycle natural gas turbines (“wind+gas”), and wind energy supplemented by compressed air energy storage (“wind+CAES”). Pure combined cycle natural gas turbines (“gas”) were used as a proxy for conventional baseload generation. Long-distance electric transmission was integral to the analysis. Given the future uncertainty in both natural gas price and greenhouse gas (GHG) emissions price, we introduced an effective fuel price, pNGeff, being the sum of the real natural gas price and the GHG price. Under the assumption of pNGeff=$5/GJ (lower heating value), 650 W/m2 wind resource, 750 km transmission line, and a fixed 90% capacity factor, wind+CAES was the most expensive system at ¢6.0/kWh, and did not break even with the next most expensive wind+gas system until pNGeff=$9.0/GJ. However, under real market conditions, the system with the least dispatch cost (short-run marginal cost) is dispatched first, attaining the highest capacity factor and diminishing the capacity factors of competitors, raising their total cost. We estimate that the wind+CAES system, with a greenhouse gas (GHG) emission rate that is one-fourth of that for natural gas combined cycle plants and about one-tenth of that for pulverized coal plants, has the lowest dispatch cost of the alternatives considered (lower even than for coal power plants) above a GHG emissions price of $35/tCequiv., with good prospects for realizing a higher capacity factor and a lower total cost of energy than all the competing technologies over a wide range of effective fuel costs. This ability to compete in economic dispatch greatly boosts the market penetration potential of wind energy and suggests a substantial growth opportunity for natural gas in providing baseload power via wind+CAES, even at high natural gas prices.  相似文献   

3.
Compressed air energy storage (CAES) could be paired with a wind farm to provide firm, dispatchable baseload power, or serve as a peaking plant and capture upswings in electricity prices. We present a firm-level engineering-economic analysis of a wind/CAES system with a wind farm in central Texas, load in either Dallas or Houston, and a CAES plant whose location is profit-optimized. With 2008 hourly prices and load in Houston, the economically optimal CAES expander capacity is unrealistically large – 24 GW – and dispatches for only a few hours per week when prices are highest; a price cap and capacity payment likewise results in a large (17 GW) profit-maximizing CAES expander. Under all other scenarios considered the CAES plant is unprofitable. Using 2008 data, a baseload wind/CAES system is less profitable than a natural gas combined cycle (NGCC) plant at carbon prices less than $56/tCO2 ($15/MMBTU gas) to $230/tCO2 ($5/MMBTU gas). Entering regulation markets raises profit only slightly. Social benefits of CAES paired with wind include avoided construction of new generation capacity, improved air quality during peak times, and increased economic surplus, but may not outweigh the private cost of the CAES system nor justify a subsidy.  相似文献   

4.
Wind parks operating in autonomous island grids, such as those encountered in the Aegean Archipelago, face considerable wind energy curtailments, owed to the inability of local electricity networks to absorb the entire wind energy production. On the other hand, plans promoting the natural gas-based electricity generation in big islands (such as Crete) question the future of wind energy. To recover wind energy curtailments and benefit from the introduction of natural gas, the adoption of compressed air energy storage (CAES) systems suggests an appreciable energy solution. Furthermore, to improve the economic performance of the proposed system, it is decided that guaranteed energy amounts should be delivered to the local grid during peak demand periods. In an effort to obtain favourable negotiation conditions – for the selling price of energy delivered – and also improve the economic performance of the system, a dual mode CAES operation is currently examined. Proceeding to the economic evaluation of dual mode CAES configurations that ensure maximum wind energy recovery, the feasibility of the proposed system may be validated. Lower electricity production costs and considerable reduction of fuel consumption achieved – in comparison with the requirements of conventional peak demand power units – illustrate the system's advantages.  相似文献   

5.
The increasing world's energy demand and environmental concerns related to GHG emissions as well as depleting fossil fuel resources and unstable prices of crude oil and natural gas have caused a renewed interest in renewable energy sources, and in particularly in biomass, as an alternative to fossil fuels. In the paper the results of steam gasification of Salix Viminalis, Miscanthus X Giganteus (MXG), and Andropogon Gerardi in a laboratory-scale fixed bed reactor in the temperature range of 650–900 °C are presented as well as the procedure and results of biomass chars reactivity testing in the process of steam gasification. The highest reactivity R50 in the whole temperature range was observed for MXG. Hydrogen content in the synthesis gas was comparable for MXG and Andropogon Gerardi and lower for Salix Viminalis, while the volumes of the synthesis gas and hydrogen were highest for MXG at all temperatures.  相似文献   

6.
Typical compressed air energy storage (CAES) based gas turbine plant operates on natural gas or fuel oils as fuel for its operation. However, the use of hydro-carbon fuels will contribute to carbon emissions leading to pollution of the environment. On the other hand, the use of hydrogen as fuel for the gas turbine will eliminate the carbon emissions leading to a cleaner environment. Hydrogen can be produced using renewable energy sources like wind, solar etc. Storage of hydrogen is a bottleneck for such a system. A high capacity sodium alanate metal hydride bed is used in this study to store the hydrogen. The dynamics of the CAES based gas turbine plant operating with hydrogen fuel is presented along with discharge dynamics of the metal hydride bed. The heat required for desorbing the hydrogen from the metal hydride bed is provided partly by the hot flue gas exiting from the low pressure turbine and partly by external heating. Thus some of the heat from the flue gas is extracted. A novel multiple bed strategy is employed for efficient desorption. Each bed consists of a shell and tube, with alanate in the shell and heating fluid flowing through the helical coiled tube. Hydrogen combustor is modeled using a simplified Continuous Stirred Tank Reactor (CSTR) assumption in CANTERA. The NOx emissions in the low pressure turbine exhaust stream are presented.  相似文献   

7.
Integrating variable renewable energy from wind farms into power grids presents challenges for system operation, control, and stability due to the intermittent nature of wind power. One of the most promising solutions is the use of compressed air energy storage (CAES). The main purpose of this paper is to examine the technical and economic potential for use of CAES systems in the grid integration. To carry out this study, 2 CAES plant configurations: adiabatic CAES (A‐CAES) and diabatic CAES (D‐CAES) were modelled and simulated by using the process simulation software ECLIPSE. The nominal compression and power generation of both systems were given at 100 and 140 MWe, respectively. Technical results showed that the overall energy efficiency of the A‐CAES was 65.6%, considerably better than that of the D‐CAES at 54.2%. However, it could be seen in the economic analysis that the breakeven electricity selling price (BESP) of the A‐CAES system was much higher than that of the D‐CAES system at €144/MWh and €91/MWh, respectively. In order to compete with large‐scale fossil fuel power plants, we found that a CO2 taxation scheme (with an assumed CO2‐tax of €20/tonne) improved the economic performance of both CAES systems significantly. This advantage is maximised if the CAES systems use low carbon electricity during its compression cycle, either through access to special tariffs at times of low carbon intensity on the grid, or by direct coupling to a clean energy source, for example a 100‐MW class wind farm.  相似文献   

8.
Hydrogen production for export to Japan and Korea is increasingly popular in Australia. The theoretically possible paths include the use of the excess wind and solar energy supply to the grid to produce hydrogen from natural gas or coal. As a contribution to this debate, here I discuss the present contribution of wind and solar to the electricity grid, how this contribution might be expanded to make a grid wind and solar only, what is the energy storage needed to permit this supply, and what is the ratio of domestic total primary energy supply to electricity use. These factors are required to determine the likeliness of producing hydrogen for export. The wind and solar energy capacity, presently at 6.7 and 11.4 GW, have to increase almost 8 times up to values of 53 and 90 GW respectively to support a wind and solar energy only electricity grid for the southeast states only. Additionally, it is necessary to build-up energy storage of actual power >50 GW and stored energy >3000 GW h to stabilize the grid. If the other states and territories are considered, and also the total primary energy supply (TPES) rather than just electricity, the wind and solar capacity must be increased of a further 6–8 times. It is concluded that it is extremely unlikely that hydrogen for export could be produced from the splitting of the water molecule by using excess wind and solar energy, and it is very unlikely that wind and solar may fully cover the local TPES needs. The most likely scenario is production hydrogen via syngas from either natural gas or coal. Production from natural gas and coal needs further development of techniques, to include CO2 capture, a way to reuse or store CO2, and finally, the better energy efficiency of the conversion processes. There are several challenges for using natural gas or coal to produce hydrogen with near-zero greenhouse gas emissions. Carbon capture, utilization, and storage technologies that ensure no CO2 is released in the production process, and new technologies to separate the oxygen from the air, and in case of natural gas, the water, and the CO2 from the combustion products, are urgently needed to make sense of the fossil fuel hydrogen production. There is no benefit from producing hydrogen from fossil fuels without addressing the CO2 issue, as well as the fuel energy penalty issue during conversion, that is simply translating in a net loss of fuel energy with the same CO2 emission.  相似文献   

9.
Biomass has been widely recognized as a clean and renewable energy source, with increasing potential to replace conventional fossil fuels in the energy market. The abundance of biomass ranks it as the third energy resource after oil and coal. The reduction of imported forms of energy, and the conservation of the limited supply of fossil fuels, depends upon the utilization of all other available fuel energy sources. Energy conversion systems based on the use of biomass are of particular interest to scientists because of their potential to reduce global CO2 emissions. With these considerations, gasification methods come to the forefront of biomass-to-energy conversions for a number of reasons. Primarily, gasification is more advantageous because of the conversion of biomass into a combustible gas, making it a more efficient process than other thermochemical processes. Biomass gasification has been studied widely as an efficient and sustainable technology for the generation of heat, production of hydrogen and ethanol, and power generation. Renewable energy can have a significant positive impact for developing countries. In rural areas, particularly in remote locations, transmission and distribution of energy generated from fossil fuels can be difficult and expensive, a challenge that renewable energy can attempt to correct by facilitating economic and social development in communities. This paper aims to take stock of the latest technologies for gasification.  相似文献   

10.
In this work, we examine the potential advantages of co-locating wind and energy storage to increase transmission utilization and decrease transmission costs. Co-location of wind and storage decreases transmission requirements, but also decreases the economic value of energy storage compared to locating energy storage at the load. This represents a tradeoff which we examine to estimate the transmission costs required to justify moving storage from load-sited to wind-sited in three different locations in the United States. We examined compressed air energy storage (CAES) in three “wind by wire” scenarios with a variety of transmission and CAES sizes relative to a given amount of wind. In the sites and years evaluated, the optimal amount of transmission ranges from 60% to 100% of the wind farm rating, with the optimal amount of CAES equal to 0–35% of the wind farm rating, depending heavily on wind resource, value of electricity in the local market, and the cost of natural gas.  相似文献   

11.
Biomass is a key renewable energy source expected to play an important role in US electricity production under stricter emission regulations and renewable portfolio standards. Willow energy crops are being developed in the northeast US as a fuel source for increasing biomass energy and bioproduct demands. A life cycle inventory is presented that characterizes the full cradle-to-grave energy and environmental performance of willow biomass-to-electricity. A willow biomass production model is developed using demonstration-scale field experience from New York. Scenarios are presented that mimic anticipated cofiring operations, including supplemental use of wood residues, at an existing coal-fired generating facility. At a cofiring rate of 10% biomass, the system net energy ratio (electricity delivered divided by total fossil fuel consumed) increases by 8.9% and net global warming potential decreases by 7–10%. Net SO2 emissions are reduced by 9.5% and a significant reduction in NOx emissions is expected. In addition, we estimate system performance of using willow biomass in dedicated biomass gasification and direct-fired generating facilities and demonstrate that the pollution avoided (relative to the current electricity grid) is comparable to other renewables such as PV and wind.  相似文献   

12.
With the increasing penetration of renewable energy into energy market, it is urgent to solve the problem of fluctuations of renewable energy sources (RES). Energy storage technology is regarded as one method to cope with the unstable nature of RES. One of these technologies is compressed air energy storage (CAES), which is a modification of the basic gas turbine technology. Electric power supplied by CAES can meet peak-load requirement of electric utility systems. Because there is heat waste in the existing CAES systems during compression process, fossil fuels are used to improve the expansion work to generate peak power. In order to avoid the use of fuels and keep high efficiency of system, CAES system with thermal energy storage (TES) is designed to capture and reuse the compressed air heat. This paper uses a thermodynamic model of a CAES system with TES to analyze the effect of TES on system efficiency. Besides, this paper evaluates the influence of temperature and pressure on the utilization of heat in TES. Results show that even when power efficiency reaches maximum, there is still a proportion of thermal energy left in TES for other use. Meanwhile, the utilization of heat in TES can be affected by pressure in the air storage chamber. With appropriate selection of pressure limits, the utilization of compressed air heat can be optimized.  相似文献   

13.
So far, solar energy has been viewed as only a minor contributor in the energy mixture of the US due to cost and intermittency constraints. However, recent drastic cost reductions in the production of photovoltaics (PV) pave the way for enabling this technology to become cost competitive with fossil fuel energy generation. We show that with the right incentives, cost competitiveness with grid prices in the US (e.g., 6–10 US¢/kWh) can be attained by 2020. The intermittency problem is solved by integrating PV with compressed air energy storage (CAES) and by extending the thermal storage capability in concentrated solar power (CSP). We used hourly load data for the entire US and 45-year solar irradiation data from the southwest region of the US, to simulate the CAES storage requirements, under worst weather conditions. Based on expected improvements of established, commercially available PV, CSP, and CAES technologies, we show that solar energy has the technical, geographical, and economic potential to supply 69% of the total electricity needs and 35% of the total (electricity and fuel) energy needs of the US by 2050. When we extend our scenario to 2100, solar energy supplies over 90%, and together with other renewables, 100% of the total US energy demand with a corresponding 92% reduction in energy-related carbon dioxide emissions compared to the 2005 levels.  相似文献   

14.
The urbanization and increase in the human population has significantly influenced the global energy demands. The utilization of non-renewable fossil fuel-based energy infrastructure involves air pollution, global warming due to CO2 emissions, greenhouse gas emissions, acid rains, diminishing energy resources, and environmental degradation leading to climate change due to global warming. These factors demand the exploration of alternative energy sources based on renewable sources. Hydrogen, an efficient energy carrier, has emerged as an alternative fuel to meet energy demands and green hydrogen production with zero carbon emission has gained scientific attraction in recent years. This review is focused on the production of hydrogen from renewable sources such as biomass, solar, wind, geothermal, and algae and conventional non-renewable sources including natural gas, coal, nuclear and thermochemical processes. Moreover, the cost analysis for hydrogen production from each source of energy is discussed. Finally, the impact of these hydrogen production processes on the environment and their implications are summarized.  相似文献   

15.
The iron and steel industry is the second largest user of energy in the world industrial sector and is currently highly dependent on fossil fuels and electricity. Substituting fossil fuels with renewable energy in the iron and steel industry would make an important contribution to the efforts to reduce emissions of CO2. However, different approaches to assessing CO2 emissions from biomass and electricity use generate different results when evaluating how fuel substitution would affect global CO2 emissions. This study analyses the effects on global CO2 emissions when substituting liquefied petroleum gas with synthetic natural gas, produced through gasification of wood fuel, as a fuel in reheating furnaces at a scrap-based steel plant. The study shows that the choice of system perspective has a large impact on the results. When wood fuel is considered available for all potential users, a fuel switch would result in reduced global CO2 emissions. However, applying a perspective where wood fuel is seen as a limited resource and alternative use of wood fuel is considered, a fuel switch could in some cases result in increased global CO2 emissions. As an example, in one of the scenarios studied, a fuel switch would reduce global CO2 emissions by 52 ktonnes/year if wood fuel is considered available for all potential users, while seeing wood fuel as a limited resource implies, in the same scenario, increased CO2 emissions by 70 ktonnes/year. The choice of method for assessing electricity use also affects the results.  相似文献   

16.
In this study we analyze the primary energy and greenhouse gas (GHG) implications of increasing biomass production by fertilizing 10% of Swedish forest land. We estimate the primary energy use and GHG emissions from forest management including production and application of N and NPK fertilizers. Based on modelled growth response, we then estimate the net primary energy and GHG benefits of using biomaterials and biofuels obtained from the increased forest biomass production. The results show an increased annual biomass harvest of 7.4 million t dry matter, of which 41% is large-diameter stemwood. About 6.9 PJ/year of additional primary energy input is needed for fertilizer production and forest management. Using the additional biomass for fuel and material substitution can reduce fossil primary energy use by 150 or 164 PJ/year if the reference fossil fuel is fossil gas or coal, respectively. About 22% of the reduced fossil energy use is due to material substitution and the remainder is due to fuel substitution. The net annual primary energy benefit corresponds to about 7% of Sweden's total primary energy use. The resulting annual net GHG emission reduction is 11.9 million or 18.1 million tCO2equiv if the reference fossil fuel is fossil gas or coal, respectively, corresponding to 18% or 28% of the total Swedish GHG emissions in 2007. A significant one-time carbon stock increase also occurs in wood products and forest tree biomass. These results suggest that forest fertilization is an attractive option for increasing energy security and reducing net GHG emission.  相似文献   

17.
压缩空气储能技术具有提升风能与太阳能等可再生资源电能质量的潜力,通过此项技术实现间歇性与不稳定性可再生电力的有效储存,进而在电网负荷高峰期以优质电力的形式稳定输出.结合热力学分析方法设计了储能功率56.58 MW,释能输出功率154.76 MW的压缩空气储能系统.在释能阶段透平机组配置上,参照GE 9171E燃机布置第二级透平入口参数,并以其812.41 K高温烟气余热提供第一级透平工质所需全部热量,无需为第一级透平配备专门燃烧器.在此思路下设计的压缩空气储能系统,热耗可降低至3783.96 kJ/(kW·h),储能系统的能量转换效率也高达56.11%.  相似文献   

18.
Greenhouse gas emission inventories are useful tools for monitoring air quality and assisting local policy development. This article estimates CO2 emission inventories from energy consumption and carbon intensities of provinces and municipalities in Mainland China in 1990, 1995, 2000, and 2005–2008 using the IPCC mass balance approach. Results show that China's coal-based energy structure and unique economic development have heavily impacted CO2 emissions. Fortunately, although coal consumption has increased to over 70% of all fuel use, the share of CO2 emissions from coal has gradually decreased due to energy consumption restructuring. The switch from coal-dominance to cleaner, renewable energies (wind, solar, natural gas, nuclear power, geothermal, biomass energy) will undoubtedly reduce CO2 emissions in China. Results also indicate that carbon intensity has improved steadily, as China's economic development introduces new technologies intended to minimize environmental pollution and destruction. Our results suggest that China's CO2 emissions may not be as high as expected in future, and will gradually lessen.  相似文献   

19.
内蒙古自治区陆上风能资源总储量达到了1380 GW,其中技术可开发量为380 GW,几乎占全国风电资源的一半.风力发电负荷已经占到内蒙古电网负荷的20%以上.针对这种情况,对大规模风电并入内蒙古电网进行了研究.在此研究基础之上,为了更有效的利用风电资源,设计了一台压缩空气储能电站.该压缩空气储能电站可以利用风电场夜晚的弃风电量进行储热,为白天的运行提供部分热源.最后,从热耗率,充电比与发电效率三方面对压缩空气储能电站进行了分析,研究结果表明,更高的储气压力和更大的储气容量能够得到更好的发电效率.  相似文献   

20.
Septimus   《Energy》2006,31(15):3446-3457
Stored energy can provide electricity during periods of high demand, as currently demonstrated with bulk storage systems such as pumped hydro storage (PHS), which accounts for only 2.5% of the current installed base load in the USA. Sites for future developments have become less available, and environmental siting issues, as well as high costs have stopped further prospects. This paper looks at the potential beyond PHS, with bulk storage systems such as compressed air energy storage (CAES) flow-batteries and 1 MW flywheel systems that can provide system stability/support at the grid, substations and distributed level. Current developments in bulk energy storage will be reviewed as well as some storage project developments incorporating wind energy and the impact on base-loaded coal and natural gas fired GT combined cycle plants. The large potential and the economic benefits for energy storage in the US will be examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号