首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
采用等离子弧堆焊设备在低碳钢表面堆焊一层Fe—Cr-Ti—C系陶瓷复合堆焊合金,原位合成TiC和M7C3陶瓷硬质相,分析熔池中TiC和M7C3陶瓷硬质相的形成机制.利用X射线衍射仪(XRD)、扫描电镜(SEM)、能谱分析仪(EDS)等设备进行检测分析.结果表明,堆焊层中原位合成了“十字开花状”、“短杆状”、“颗粒状”的TiC陶瓷硬质相和不规则“六角杆状”的M7C3陶瓷硬质相;部分TiC和M7C3陶瓷硬质相紧密结合,提高了TiC陶瓷硬质相与基体组织的结合强度;M7C3可以附着在TiC颗粒上生长,TiC硬质相的形成提高了M7C3的形核率.  相似文献   

2.
通过调节Cr、V元素在Fe-Cr-V-C系合金成分中的组成,以及整个合金体系在焊条药皮中的比例,研究了一种通过手工电弧焊的焊条药皮过渡合金到堆焊层,在堆焊层中原位合成陶瓷硬质相的耐磨焊条。对所配焊条进行手工堆焊,通过硬度和磨损试验得到宏观性能的规律,并利用XRD、EDS和SEM分析了堆焊层的物相组成、组织形态及分布情况。结果表明,堆焊层的力学性能随着铬、钒含量的增加而变化,当铬在焊条药皮中含量为17.4%、钒含量为11.6%时,堆焊层硬度和磨损性能达到最佳值,且有较好的抗裂性。堆焊层中碳化钒的形成数量随V含量的增大而增加,多数呈点状,少数呈十字状、棒状,弥散分布在马氏体+残余奥氏体基体中,与晶界分布的网状(Fe,Cr)7C3耐磨骨架构成复合相,显著提高了堆焊层的耐磨性能。  相似文献   

3.
在低碳钢基体上涂敷一层南钛铁、硼铁、硅铁、高碳铬铁等构成的合金粉末,采用正极性等离子弧堆焊技术进行堆焊,利用原位自成法生成陶瓷硬质相,得到硬度在58HRC以上且耐磨性好的堆焊层.实验结果表明:通过原位自生法在堆焊层中生成了大量的陶瓷硬质相,包括Cr2B、TiC、Si5C3、Cr7C3、B4C等,与直接加入陶瓷硬质相比较,大大节省了成本.  相似文献   

4.
贾华  刘政军  李萌  张琨 《焊接学报》2019,40(9):122-127
采用明弧堆焊技术在Q235基体金属表面制备Fe-Cr-C-B-N-Ti系铁基复合材料. 借助金相显微镜、扫描电子显微镜、X射线衍射仪、洛氏硬度计和磨料磨损试验机对铁基复合材料的组织和性能进行分析与测试. 结果表明,铁基复合材料的基体组织由马氏体(M)和少量残余奥氏体(A)组成,硬质相由TiB2,TiN,TiC,M23(C,B)6,M3(C,B)和M2B组成. 随着钛添加量的增多,初生陶瓷硬质相颗粒(TiB2,TiN和TiC)和共晶硬质相(M23(C,B)6,M3(C,B)和M2B)增多,基体组织减少并细化. 当钛添加量为4%时,铁基复合材料的耐磨性达到最佳,此时硬度为66 HRC,磨损量为0.042 9 g.  相似文献   

5.
宗琳  刘政军 《热加工工艺》2012,41(8):141-143
为提高钢基材的耐磨性能,采用等离子堆焊技术,制备了原位自生M7C3-TiC增强铁基堆焊层。利用金相显微镜、扫描电镜、X射线衍射仪及显微硬度计对堆焊层的组织和性能进行了测试。结果表明:堆焊层与基体之间形成了良好的冶金结合;堆焊层表层组织由马氏体、(Fe,Cr)7C3和TiC构成;初生(Fe,Cr)7C3呈六边形,晶粒尺寸较大,均匀弥散分布在堆焊层中,TiC颗粒呈开花状、立方体或团聚状;堆焊层硬度从基体到表面呈合理的梯度分布,较基体有显著提高。  相似文献   

6.
M7C3的形态分布对铁基复合层耐磨性能的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
刘政军  苏允海 《焊接学报》2008,29(1):65-68,72
研究了在电磁搅拌的作用下,硬质相M7C3(主要是(Fe, Cr)7C3和Cr7C3)的数量和形态分布对堆焊层金属耐磨性的影响规律.对堆焊试件进行耐磨、硬度试验,并采用SEM,XRD对堆焊进行显微组织和成分分析.发现随着磁场参数的改变,硬质相M7C3由杂乱无章的分布逐渐转变为较规则的六方块状分布,堆焊层金属的耐磨性也随之增强;当磁场电流为3A,磁场频率为10Hz时,堆焊层金属的性能达到最佳状态,此时堆焊层中硬质相(M7C3)均成较规则的六方块状分布.结果表明,在适当的磁场参数作用下,硬质相(M7C3)成较规则的六方块状分布可以显著的提高堆焊层金属的耐磨性.  相似文献   

7.
将纵向磁场引入到Fe5铁基合金粉末的等离子弧堆焊过程中,通过磁场的作用影响堆焊层中硬质相的形态及分布.利用金相显微镜和X射线衍射研究堆焊层中硬质相Cr7C3的显微组织和取向行为.结果表明,具有顺磁性的硬质相Cr7C3在外加磁场的作用下进行形核及长大的过程中有明显的取向现象,在磁场电流为3 A时,堆焊层中硬质相的分布形态最佳,以细小的"六边形"为主,可以显著提高堆焊层的影响和耐磨性;硬质相的取向机理主要是高温的旋转取向和低温的择优取向.  相似文献   

8.
采用自蔓延燃烧合成法在室温下的空气中制备出TiB2/Al2O3复相陶瓷,通过X射线衍射(XRD)和扫描电镜(SEM)分析表明:大部分TiB2的形貌为规则的块状,晶粒细小,平均尺寸为几个微米,但也出现了TiB2枝晶和棒状晶。而Al2O3的颗粒较大(10-40μm),形状不规则,Al2O3的断口呈层片状,Al2O3和TiB2出现聚集现象。  相似文献   

9.
本文论述了利用活性等离子体喷涂沉积含有原位合成的碳化物或氮化物的钛复合物涂层的过程。用钛粉作为原始粉末,用甲烷和氮气作反应气体。显微结构分析表明在喷涂过程中合成了钛一碳化物和氮化物。这些复合物涂层具有较高的抗滑动磨损性能和良好的耐磨蚀性能。  相似文献   

10.
以Ti、Si和活性炭粉为主要原料,利用热压烧结工艺合成了Ti3SiC2/TiC复相陶瓷.研究了工艺条件尤其是不同保温保压时间对合成产物相组成及微观结构的影响,并结合XRD、SEM和热力学分析等探讨了反应合成机理.结果表明:热压温度为1400℃,25MPa保温保压4h时,得到了均匀、致密的Ti3SiC2/TiC强夹层复合陶瓷,其中TiC颗粒均匀地分布在Ti3 SiC2陶瓷基体中;同时保温保压时间对Ti3SiC2/TiC的合成起关键作用.  相似文献   

11.
多元陶瓷复合相显微组织对耐磨性能的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
采用等离子熔覆技术制备了四种不同铬含量的Fe-Cr-B-C堆焊合金.借助OM,SEM和XRD等分析手段对合金组织和陶瓷相形貌进行分析.结果表明,熔覆层的微观组织由初生奥氏体+共晶组织组成,合金陶瓷相由BC4+Cr2B+M7C3+M23C6+M23(C,B)6组成,硼化物呈层片状、菊花状等形态分布,陶瓷相数量随Cr元素含量的增大而增多.研究了Cr元素含量对熔覆层耐磨粒磨损性能的影响规律,熔覆层的耐磨性随着Cr元素含量的增加而提高,当Cr元素含量达到15.9%时,大量硼化物等陶瓷相弥散分布在基体中,构成良好的耐磨骨架;初生奥氏体组织均匀分布提高硬质相与基体界面的结合强度,因此其熔覆层具有最佳的耐磨性.  相似文献   

12.
以分析纯三氧化二铁和粒度小于10μm的铝粉为反应原料,采用强电流加热的方法点燃,在马氏体不锈钢上原位合成Al2O3陶瓷,形成Al2O3陶瓷/马氏体不锈钢复合材料.利用光学显微镜和扫描显微镜对自蔓延高温合成的Al2O3陶瓷相及其与马氏体不锈钢形成的过渡区进行了显微组织分析;利用电子探针对合成的陶瓷相的成分进行了测定.研究结果表明,在Al/Fe2O3自蔓延高温合成体系中,合成的Al2O3陶瓷的显微组织主要为Al2O3陶瓷相和少量的铁素体与尖晶石相Al2O3·FeO;反应合成原料中过量的Al有利于Al2O3陶瓷相的致密化;反应合成原料坯块的厚度大于2.00 mm时,能获得结合界面状况良好的Al2O3/马氏体不锈钢复合材料.  相似文献   

13.
激光熔覆铁基Cr_3C_2/MoS_2覆层的组织和摩擦磨损性能   总被引:1,自引:1,他引:0  
采用激光熔覆方法,在45钢表面制备出铁基-Cr3C2/MoS2耐磨减摩覆层,通过OM、SEM、EDS、XRD、摩擦磨损试验及XPS对覆层组织、摩擦磨损性能及磨球表面氧化进行了分析。研究表明,熔覆过程中Cr3C2分解主要生成了Cr23C6硬质相;MoS2部分分解形成了CrS微粒,与保留的MoS2一起对覆层材料起到润滑作用。与铁基合金覆层相比,加入Cr3C2/MoS2颗粒后,覆层的摩擦磨损性能显著改善;加入12Cr3C2/6MoS2后,覆层的摩擦因数降低到0.21,仅为铁基覆层的56%,相对耐磨性为其2倍;与Cr12MoV钢相比,铁基-12Cr3C2/6MoS2覆层的摩擦因数仅为其51%,相对耐磨性为其2.4倍。研究表明,覆层表面磨损形式主要是粘着磨损及磨粒磨损,加入Cr3C2/MoS2颗粒相后覆层的磨损程度减轻。XPS分析表明,其磨球表面形成了Cr、Fe的氧化物,对降低磨耗及摩擦阻力有积极作用。  相似文献   

14.
邹家生  初雅杰  翟建广  陈铮 《焊接学报》2004,25(2):43-46,51
采用Ti(5μm)/Cu(70μm)/Ti中间层,通过改变连接时间和连接温度进行Si3N4。陶瓷的部分瞬间液相连接(PTLP连接),用扫描电镜、电子探针对连接界面区域进行了分析,系统地研究了Si3N4/Ti/Cu/Ti/Si3N4 PTLP连接过程的动力学。结果表明,界面反应层的生长和等温凝固界面的迁移均符合扩散控制的抛物线方程。PTLP连接参数的优化不同于通常的活性钎焊和固相扩散连接的参数优化,反应层生长和液相区等温凝固这两个过程必须协调,才能同时提高室温和高温连接强度。  相似文献   

15.
以直径200μm、纯度99.5%的钛丝丝网为反应源,通过熔渗-原位反应法制备一种Al3Ti金属间化合物颗粒增强铝基表面复合涂层。差热分析结果表明,在890°C下,Ti丝和Al熔体间发生反应。采用XRD、SEM以及显微硬度和磨损测试对所得到的复合涂层进行表征。结果表明:当保温时间为20min时,钛丝反应完全,原位合成为块状和条状的Al3Ti颗粒;颗粒的显微硬度大约为基体显微硬度的4.5倍;在载荷10N的干滑动磨损条件下,与没有增强的Al基体相比较,保温20min所制备的复合涂层表现出较好的耐磨性,其磨损机制为粘着磨损和磨粒磨损共存。  相似文献   

16.
以Ti、B4C和Al-12Si粉末为原材料,通过超声辅助激光沉积制备了原位TiC-TiB2/Al-12Si铝基复合材料。采用XRD、EDS分析了复合材料的物相组成,通过OM、SEM观察了复合材料的微观组织,利用摩擦磨损试验机和三维轮廓仪测试了复合材料的磨损性能。结果表明,随Ti+B4C含量的增加,α-Al晶粒细化,原位生成的TiB2呈棒状,且可成为α-Al的异质形核核心;原位生成的TiC为150nm多边形形貌。随Ti+B4C含量的增加,原位TiC-TiB2/Al-12Si铝基复合材料的耐磨性提高;未加入Ti+B4C的Al-12Si合金磨损机制为疲劳磨损;当Ti+B4C的加入量为8%(质量分数)时,磨损机制为磨粒磨损;当Ti+B4C的加入量为10%时,其磨损机制转变为疲劳磨损。  相似文献   

17.
Preparation of the ternary carbide Cr2AlC was conducted by combustion synthesis in the mode of self-propagating high-temperature synthesis (SHS) from the Cr2O3-Al-Al4C3 powder compact. Effects of the contents of Al and Al4C3 on the product composition and combustion behavior were studied by formulating the reactant mixture with a stoichiometric proportion of Cr2O3:Al:Al4C3 = 3:5x:y, where x and y varied from 1.0 to 1.5. When compared to those of the powder compact with Cr2O3:Al:Al4C3 = 3:5:1 (i.e., x = y = 1.0), the combustion temperature and reaction front velocity increased with content of Al, but decreased with that of Al4C3. Besides Cr2AlC and Al2O3, the final products always contained a secondary phase Cr7C3 that was substantially reduced by adopting additional Al and Al4C3 in the reactant compacts. For the sample with Cr2O3:Al:Al4C3 = 3:7.5:1 (x = 1.5), solid state combustion reached a peak temperature of 1245 °C and yielded Cr2AlC with a trivial amount of Cr7C3. Although Cr7C3 was lessened by introducing extra Al4C3, the increase of Al4C3 from y = 1.1 to 1.5 produced almost no further reduction of Cr7C3 in the final product. This is partly attributed to the low combustion temperature in the range of 1065-1095 °C for the samples with additional Al4C3, and in part, due to the role of Al4C3 which might react with Cr to form Cr7C3, Cr2Al, and Cr2AlC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号