首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Thermal Analysis of Grinding   总被引:8,自引:0,他引:8  
S. Malkin 《CIRP Annals》2007,56(2):760-782
Thermal damage is one of the main limitations of the grinding process, so it is important to understand the factors which affect grinding temperatures. This paper presents an overview of analytical methods to calculate grinding temperatures and their effect on thermal damage. The general analytical approach consists of modeling the grinding zone as a heat source which moves along the workpiece surface. A critical factor for calculating grinding temperatures is the energy partition, which is the fraction of the grinding energy transported as heat to the workpiece at the grinding zone. For shallow cut grinding with conventional abrasive wheels, the energy partition is typically 60%-85%. However for creep-feed grinding with slow workspeeds and large depths of cut, the energy partition is only about 5%. Such low energy partitions are attributed to cooling by the fluid at the grinding zone. Heat conduction to the grains can also reduce the energy partition especially with CBN abrasives which have high thermal conductivity. For High Efficiency Deep Grinding (HEDG) using CBN wheels with large depths of cut and fast workspeeds, preheated material ahead of the grinding zone is removed together with the chips, thereby lowering the temperature on the finished surface. Analytical models have been developed which take all of these effects into account. Much more research is needed to better understand and quantify how grinding temperatures affect the surface integrity of the finished workpiece.  相似文献   

2.
Brief design and manufacture considerations are detailed for a hybrid electrochemical grinding unit adapted from a vertical machining centre using a 40,000 rpm spindle and 500 A DC generator. Subsequently, experimental work is presented on the influence of tool bond systems, superabrasive grit type and electrical parameters when simultaneous ECM/grinding Udimet 720 using 10-15 mm diameter plain points. Single layer electroplated CBN tools produced G-ratios and maximum normal cutting forces of ∼451 and ∼45 N, respectively, compared to ∼128 and 557 N for equivalent diamond wheels. Data on workpiece roughness and overcut are also presented as are initial results for a fir tree shaped tool.  相似文献   

3.
Machining data are presented for small diameter, profiled (fir tree root form), single layer/electroplated CBN (B46, B76 and 91) and diamond (D46) grinding wheels, when cutting Udimet 720. Spindles operating at 60,000 and 90,000 rpm were employed, with a synthetic polyalphaolefine (PAO) oil based fluid in a down grinding mode on single sided specimens. Operating parameters were selected to reflect finishing conditions. Measured tool wear was lower for CBN grit as compared to diamond however workpiece roughness was lower with Ra approaching 0.75 μm when using D46 wheels. Higher rotational speed produced lower grinding wheel wear. No workpiece burning was observed irrespective of grit type at the conditions tested.  相似文献   

4.
严勇  郭力 《机床与液压》2014,42(5):66-68
磨削加工时需要非常高的能量输入,导致磨削区温度升高,因此干磨变得非常困难。介绍一种新的方法来减少热能,即在特殊条件下使用金刚石修整器来修整CBN砂轮,使砂轮表面磨粒面积减少。实验结果表明:与同样的材料磨除率下的普通砂轮磨削过程比较,该砂轮的磨削力大幅下降,没有磨削烧伤和工件表面损伤发生。  相似文献   

5.
陶瓷结合剂CBN砂轮对GCrl5轴承钢锭子的磨削研究   总被引:5,自引:1,他引:5  
本文通过用棕刚玉与CBN磨具分别对GCr15轴承钢进行磨削试验,对磨削过程中的参数:温度、磨削力、磨具工作状况以及工件表面质量进行对比,发现CBN磨具可避免棕刚玉磨具因组成所导致的工作环境污染,并使工件的表面磨削质量明显改善,生产效率也提高20倍以上,具有很高的推广价值。  相似文献   

6.
The objective of this research is to characterize the micro-grinding process under the condition of compressed chilly air in the meso-scale grinding machine tool system. The meso-scale grinding machine tool having the size of 210×190×220 mm is developed in a horizontal configuration. To investigate the effect of compressed chilly air on the micro-grinding performances, grinding force, tool wear patterns and surface roughness are measured and analyzed with varying depths-of-cut feed speeds and temperatures of the compressed air. A series of micro-grinding experiments are conducted by considering electroplated CBN grinding tool and stainless steel workpiece and vitrified CBN grinding tool and tool steel workpiece. The experimental results show the effectiveness of compressed chilly air and its ability to improve tool life with decreased grinding forces in the micro-grinding process.  相似文献   

7.
Experiments of rotary diamond truing and dressing of vitreous bond grinding wheels were conducted to investigate the effects of feed, speed ratio, and overlap ratio on cylindrical grinding of zirconia. The applications of ceramic engine components with complex and precise form and the lack of technology for precision truing of diamond grinding wheels have driven the need to study the use of vitreous bond CBN and SiC wheels for form grinding of ceramics. Truing and grinding forces and the roundness and surface finish of ground zirconia parts were measured. By varying truing process parameters, a wide range of surface finish and roundness could be achieved. Experimental results showed that wheels trued at speed ratio below −1.0 could grind parts with fine surface finish and good roundness. The analysis of truing and grinding results showed the trend of increasing grinding force at higher specific truing energy and better surface finish at higher grinding force. The lack of speed control of the direct–drive, variable–speed truing spindle was observed and its effect on the reverse of direction of truing force at positive speed ratios was studied.  相似文献   

8.
High Efficiency Deep Grinding of a Low Alloy Steel with Plated CBN Wheels   总被引:2,自引:0,他引:2  
High efficiency deep grinding (HEDG) of a low alloy steel (51CrV4) has been carried out on an Edgetek 5-axis CNC grinding machine, using electroplated CBN wheels. The initial tests were conducted in a surface grinding mode over a wide range of grinding conditions, to evaluate the levels of specific grinding energy, workpiece surface integrity and wheel wear. The burn threshold conditions for the ground workpiece surface have been proposed in terms of a critical heat flux which is shown to vary with material removal rate. Cylindrical grinding in HEDG mode has also been carried out based on the knowledge obtained from the surface grinding. It has shown that the HEDG technology can be transferred successfully to the field of cylindrical grinding to achieve very high specific material removal rates in excess of 400mm3/mm.s. The successful application of HEDG to cylindrical components depends on the appropriate selection of grinding parameters and also the grinding fluid supply strategy. Thermal modelling of the HEDG process combined with surface integrity studies, has shown that under cylindrical grinding conditions a significant reduction in grinding fluid supply is possible even when operating within the HEDG regime.  相似文献   

9.
Data is presented for wheel wear, cutting forces and workpiece integrity when high speed routing 10 mm thick CFRP laminates using single layer electroplated diamond and CBN grinding points as opposed to standard end milling tools. A 60,000 rpm retrofit spindle was utilised to accommodate the 10 mm diameter wheels having grit sizes of 76, 151 and 252 μm employed under either roughing or finishing parameters. Wear of CBN points exhibited a near two-fold increase over diamond with a similar ratio for cutting forces. Despite use of flood cooling, point geometry when roughing compromised life and integrity due to excessive clogging.  相似文献   

10.
研究单晶硅片磨削用陶瓷结合剂金刚石砂轮的组织结构对砂轮性能的影响,评估砂轮组织结构对砂轮磨损速率、磨床主轴电流、磨削后的单晶硅片表面粗糙度及其表面形貌的影响。试验结果显示:主轴电流随着砂轮组织中孔隙率的增加呈现下降趋势,从最高的7.0 A降低至6.3 A;砂轮的磨损速率则表现出相反的规律,气孔率最大的砂轮的磨损速率是最小的砂轮的近2倍,分别为2.525 2 μm/片和1.423 8 μm/片;砂轮组织结构对磨削后工件的表面粗糙度影响不大,工件的表面粗糙度Ra值分别为7.67、7.47和7.37 nm;但当气孔孔径过大、孔壁变薄时,会造成磨削工件表面出现深划痕,导致硅片磨削质量恶化。   相似文献   

11.
为提高磁力研磨TC4钛合金的研磨效果,采用了一种新型CBN磁性磨料,通过正交试验法对磁力研磨TC4钛合金试验中各工艺参数进行优化,并通过试验评价新型CBN磁性磨料的结合强度和研磨能力。结果表明:优化工艺参数为:进给速度1mm/min、主轴转速1500r/min、加工间隙1mm和磨料填充量2.5g。在采用CBN磁性磨料和最优工艺参数组合下,钛合金工件经过30min研磨表面粗糙度从0.330μm下降到0.098μm,表面质量明显提高。研磨60min后磁性磨料未出现磨料脱落和破碎现象,磨料结合十分牢固。  相似文献   

12.
《CIRP Annals》1987,36(1):231-234
The warp of steel and brittle material thin workpieces in one-pass surface grinding has been studied, using WA, CBN, and diamond wheels. The grinding experiments were conducted on annealed and hardened steels, sintered alumina, cemented carbide and silicon, whose size was 1.5mm thickness and 100mm length, at depths of cut to 30μm. Grinding force, as well as residual stress, was measured to interpret the results of curvature. A SEM micrographic study of grinding affected zone was performed. Thus, the difference in curvature for the WA, CBN, and diamond wheels was evident. The superabrasive wheels, especially diamond wheel, tend to cause a convex curvature, and a major reason for the inclination to convex curvature is considered a plastically deformed layer.  相似文献   

13.
磨削高温是限制磨削技术发展的主要瓶颈之一,因而研究磨削过程中产生高温的机理及磨削温度的变化规律十分重要。采用260 mm的单层钎焊有序排布CBN砂轮,对镍基高温合金GH4169进行不同速度下的磨削实验。实验过程中,保持砂轮线速度和工件进给速度的比值不变,从而保持单颗磨粒最大未变形切屑厚度不变,发现比磨削能得到有效控制,磨削温度的上升主要由材料去除率的提高所导致;随着砂轮线速度的增加,磨削弧区热量分配关系发生显著变化,传入工件的能量增加;磨粒排布方式对传入工件的热量有影响,同一磨削工艺参数下,磨粒斜排布的砂轮磨削温度要低于磨粒直排布的砂轮,最佳磨粒排布方案还有待进一步的研究。  相似文献   

14.
Use of a diamond wheel with superabrasive is required for mirror-like surface grinding of brittle materials. However, conventional dressing methods cannot apply to the diamond wheel with superabrasive. Recently, an electrolytic dressing method was developed for use with a cast iron-bonded diamond wheel and superabrasive. This technique can replace lapping and polishing. Using electrolytic dressing, surface roughness of the workpiece was improved significantly, and the grinding force was very low and the continuity of the grinding force was also improved. The purpose of this study was to achieve mirror-like surface grinding of ferrite with electrolytic dressing of a metal-bonded diamond wheel. For application of ultraprecision grinding for brittle material, superabrasive, air spindle, and in-process electrolytic dressings were used. Additionally, the effects of pick current and pulse width on ground surface were investigated, and suitable dressing conditions for ferrite were determined.  相似文献   

15.
Grinding processes performed with flexible robotic tool holders are very unlike conventional types of grinding because of low stiffness of the robot's structure. A special flexible robotic grinding process is used for in situ maintenance of large hydroelectric equipment for bulk material removal over large areas rather than as a finishing step, as is the case for most conventional grindings. Due to the low structural stiffness of tool holder, cutting is interrupted at each revolution of wheel during the grinding process. In this study, an investigation is carried out to determine the temperatures and energy partition to the workpiece for the above-mentioned flexible robotic grinding process by a three-dimensional finite element thermal model. Experiments were undertaken using embedded thermocouples to obtain the subsurface temperature at several points in the workpiece during the process. Then, energy partition to the workpiece was evaluated using a temperature-matching method between the experimental and numerical results. This ratio is used for predicting the temperature field at the wheel–workpiece interface with a relevant heat source function. Kinematics of cut and the flexible robot's dynamic behavior are considered in applying the heat input to the model. The energy partition to the workpiece in this specific flexible grinding process is found to be lower than for analogous conventional precision grinding processes. Two models, one from the literature and one from the power model of the process, are modified and proposed for determining the energy partition. The results showed that the energy partition ratio decreases by increasing the process power. Also, this ratio slightly decreases at higher feed speeds. In addition, lower temperatures were seen at higher powers due to the lower intensity of heat input over a larger contact area. Experimental observations show close agreement between simulated contact temperatures and measured results.  相似文献   

16.
陈峻岐 《机床与液压》2021,49(5):115-119
为研究微织构对切削过程中产生的切削力和已加工表面粗糙度的影响,在聚晶立方氮化硼(PCBN)刀片前刀面制备与主切削刃平行的宽度为32.6μm的微沟槽织构。分别用微沟槽刀具和无织构刀具在主轴转速为450、500、600 r/min的条件下切削淬硬钢GCr15,分析切削力和已加工表面粗糙度。试验结果表明:微沟槽改善了刀具的切削性能,主切削力、进给力和切深力均小于无织构刀具;进给力、切深力随着主轴转速的增加均变大,主切削力表现为先减小再增大;用微沟槽织构刀具切削的已加工表面粗糙度大于无织构刀具,表明微沟槽不利于获得表面质量较好的工件;随着主轴转速增加,微沟槽刀具和无织构刀具切削的表面粗糙度均减小。  相似文献   

17.
Cutting forces generated using CBN tools have been evaluated when cutting steel being hardened to 45–55 HRC. Radial thrust cutting force was the largest among the three cutting force components and was most sensitive to the changes of cutting edge geometry and tool wear. The surface finish produced by CBN tools was compatible with the results of grinding and was affected by cutting speed, tool wear and plastic behaviour of the workpiece material.  相似文献   

18.
用相同粒度的CBN与刚玉砂带,分别磨削45号钢,分析并比较其磨削性能。结果表明:CBN砂带磨耗比为210.4,刚玉砂带磨耗比为18.9,CBN砂带耐磨性远远高于刚玉砂带;CBN砂带加工工件的表面质量要优于刚玉砂带,但两者磨削工件的表面粗糙度Ra相差不大,分别为0.127 μm、0.128 μm;CBN砂带磨料出刃高,初始磨削效率高;刚玉砂带树脂结合剂硬度低,磨削60 min后基本丧失了磨削能力,而CBN砂带金属镍结合剂与磨料硬度有很好的匹配性,180 min后仍能保持28.2 g/h磨削效率。   相似文献   

19.
针对引入孔隙结构后,多孔金属结合剂超硬磨具耐用度降低的问题,提出利用超硬磨料钎焊技术改善胎体对金刚石磨料的把持力,以提高工具寿命,并成功研制出一种新型多孔金属结合剂金刚石磨盘。测试分析了新型磨盘的节块性能,并通过磨削花岗岩安溪红635试验,对新型磨盘的磨削效果进行评价。实验结果表明:新型磨盘节块强度在100MPa左右,孔隙率为60%,孔隙在节块内部分布均匀,且金属结合剂与金刚石表面发生了牢固的化学冶金结合;磨削石材的表面粗糙度Ra0.77~1.59μm,磨盘的磨削比达到760。  相似文献   

20.
为分析CBN砂轮高速磨削颗粒增强钛基复合材料(particulate reinforced titanium matrix composites,PTMCs)的磨削性能,采用3种CBN砂轮开展PTMCs的高速磨削试验,对比研究其磨削力、温度、表面粗糙度及表面形貌。结果表明:相对陶瓷砂轮,钎焊砂轮的法向磨削力减小16.2%~40.4%、切向力减小25.2%~44.4%,磨削温度降低了26.0%~74.3%;相对电镀砂轮,钎焊砂轮的法向磨削力减小7.1%~31.1%、切向力减小23.3%~31.1%,磨削温度降低了14.5%~58.9%;钎焊砂轮在加工中表现出了最低的磨削力和温度,获得了最低的表面粗糙度和最好的表面质量,表面粗糙度可以达到0.60~0.77 μm。因此,在高速磨削PTMCs时,钎焊砂轮更具优势。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号