首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
介绍了一种纳米MOSFET(场效应管)栅电流的统一模型,该模型基于Schrodinger-Poisson方程自洽全量子数值解,特别适用于高k栅介质和多层高k栅介质纳米MOSFET.运用该方法计算了各种结构和材料高k介质的MOSFET栅极电流,并对pMOSFET和nMOSFET高k栅结构进行了分析比较.模拟得出栅极电流与实验结果符合,而得出的优化氮含量有待实验证实.  相似文献   

2.
王伟  孙建平  顾宁 《微电子学》2006,36(5):622-625,629
运用一种全量子模型,研究高k栅介质纳米MOSFET(场效应管)栅电流,特别适用于各种材料高k栅介质和高k叠栅介质纳米MOSFET。使用该方法,研究了高k栅介质中氮含量等元素对栅极电流的影响,并对模拟结果进行了分析比较。结果显示,为了最大限度减少MOS器件的栅泄漏电流,需要优化介质中的氮含量。通过对比表明,模型与实验结果符合。  相似文献   

3.
王伟  孙建平  徐丽娜  顾宁   《电子器件》2006,29(3):617-619,623
采用Schroedinger-Poisson方程自洽全量子求解法研究了MOS器件不同介质材料和栅结构栅电流,该模型对栅电流中的三维电流成分用行波统一地计算;对二维栅电流成分通过反型层势阱中准束缚态的隧穿率计算。模拟得出栅极电流与实验结果符合。研究结果表明,采用高愚栅介质材料、p-MOSFET或双栅结构对栅电流的减少有明显的作用,这一结果可望对器件性能作出预计并对其研制提供指导。  相似文献   

4.
Modeling of Gate Current and Capacitance in Nanoscale-MOS Structures   总被引:1,自引:0,他引:1  
By applying a fully self-consistent solution of the Schrodinger-Poisson equations, a simple unified approach has been developed in order to study the gate current and gate capacitance of nanoscale-MOS structures with ultrathin dielectric layer. In this paper, the model has been employed to investigate various gate structure and material combinations, thereby demonstrating wide applicability of the present model in the design of nanoscale-MOSFET devices. The results obtained by applying the proposed model are in good agreement with experimental data and previous models in the literature. A new result concerning optimum nitrogen content in HfSiON high-k gate-dielectric structure reported in this paper requires experimental verification through device fabrication  相似文献   

5.
SiO2作为栅介质已无法满足MOSFET器件高集成度的需求,高k栅介质材料成为当前研究的热点。综述了高k栅介质材料应当满足的各项性能指标和研究意义,总结了La基高k栅介质材料的最新研究进展,以及在改正自身缺点时使用的一些实验方法,指出了有可能成为下一代MOSFET栅介质的几种La基高k材料。La基高k材料的研究为替代SiO2的芯片制造工艺提供优异的候选材料及理论指导,这是一项当务之急且浩大的工程。  相似文献   

6.
Plasma-based dry etch is used as the industry standard gate etch in conventional CMOS fabrication flow. However, past studies indicate that plasma-induced dry etch may impact device performance. The current research trend toward replacing conventional silicon dioxide and polysilicon gate stacks with high-k/metal gate stacks introduces a new challenge: development of new dry etch processes for critical new metals and their alloys. In this letter, a comparative study in the context of device performance has been conducted to compare dry etch versus wet etch for gate stack etch of hafnium oxide/tantalum silicon nitride gate stack. It has been found that the dry-etched gate stack exhibit significantly more gate leakage current and poorer uniformity in threshold-voltage distribution  相似文献   

7.
先进的Hf基高k栅介质研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
许高博  徐秋霞   《电子器件》2007,30(4):1194-1199
随着CMOS器件特征尺寸的不断缩小,SiO2作为栅介质材料已不能满足集成电路技术高速发展的需求,利用高k栅介质取代SiO2栅介质成为微电子技术发展的必然.但是,被认为最有希望替代SiO2的HfO2由于结晶温度低等缺点,很难集成于现有的CMOS工艺中,新型Hf基高k栅介质的研究成为当务之急.据报道,在HfO2中引入N、Si、Al和Ta可大大改善其热力学稳定性,由此形成的高k栅介质具有优良的电学特性,基本上满足器件的要求.本文综述了这类先进的Hf基高k栅介质材料的最新研究进展.  相似文献   

8.
HfO2/TaON叠层栅介质Ge MOS器件制备及电性能研究   总被引:1,自引:0,他引:1  
为提高高k/Ge MOS器件的界面质量,减小等效氧化物厚度(EOT),在high-k介质和Ge表面引入薄的TaON界面层.相对于没有界面层的样品,HfO2/TaON叠层栅介质MOSFET表现出低的界面态密度、低的栅极漏电和较好的输出特性.因此利用TaON作为Ge MOS器件的界面钝化层对于获得小的等效氧化物厚度和高的高k/Ge界面质量有着重要的意义.  相似文献   

9.
The impact of a high-k gate dielectric on the device and circuit performances of nanoscale double-gate (DG) FinFET CMOS technology is examined via physics-based device/circuit simulations. DG FinFETs are designed with high k at the high- performance 45-nm node of the 2005 Semiconductor Industry Association International Technology Roadmap for Semiconductors (ITRS; Lg = 18 nm), and are compared with a pragmatic design in which the traditional SiON (or SiO2) gate dielectric is retained and kept relatively thick to avoid excessive gate tunneling current. Whereas it is presumed that a high-k dielectric, if and when adequately integrated, will significantly enhance CMOS scalability and performance, we show that there are heretofore unacknowledged compromising effects associated with it that undermine this enhancement. In fact, our results show that for DG FinFET CMOS, a high-k gate dielectric actually undermines speed performance while giving little improvement in scalability relative to the pragmatic design, whereas the latter can be scaled, with good performance, to the end of the ITRS.  相似文献   

10.
The impact of high-k gate dielectrics on device short-channel and circuit performance of fin field-effect transistors is studied over a wide range of dielectric permittivities k. It is observed that there is a decrease in the parasitic outer fringe capacitance Cof in addition to an increase in the internal fringe capacitance Cif with high-k dielectrics, which degrades the short-channel effects significantly. It is shown that fin width scaling is the most suitable approach to recover the degradation in the device performance due to high-k integration. Furthermore, from the circuit perspective, for the 32-nm technology generation, the presence of an optimum k for a given target subthreshold leakage current has been identified by various possible approaches such as fin width scaling, fin-doping adjustment, and gate work function engineering  相似文献   

11.
高k栅介质的可靠性问题   总被引:1,自引:0,他引:1  
随着集成电路特征尺寸的不断缩短,利用先进的高k/金属栅堆叠来取代传统的SiO2/多晶硅栅结构成为微电子技术发展的必然,确保这些新的栅极堆叠类型具有足够的可靠性是非常重要的.综述了高k栅介质可靠性的研究现状,阐明了瞬态充电效应导致的阈值电压不可靠问题,对偏压温度不稳定现象(BTI)和高k击穿特性进行了探讨.  相似文献   

12.
In this paper analytical modeling for a novel three region gate dielectric engineered AlGaN/GaN Metal Insulator Semiconductor heterostructure field effect transistor (MISHFET) device architecture is presented which shows high transconductance and enhanced cut-off frequency at quarter micron gate lengths. Using a three region analysis along the horizontal direction in the gate dielectric region the expressions for transconductance and cut-off frequency of the device are obtained. It has been observed that using these gate dielectric schemes, improvements on device performance are observed over conventional MISHFET structures. Relative comparison of T and Γ-gate shaped structures is done with uniform gate dielectric profile and enhancement in microwave performance is observed. The proposed model is capable of modeling electrical characteristics like drain current, output conductance and threshold voltage of various other existent structures like uniform gate dielectric MISHFETs, HFETs and T-gate HFETs. The present model is based on closed form expression and does not involve any fitting parameter. The results obtained are compared with experimental data and show excellent agreement, thereby proving the validity of the model.  相似文献   

13.
In this paper, novel nanoscale MOSFET with Source/Drain-to-Gate Non-overlapped and high-k spacer structure has been demonstrated to reduce the gate leakage current for the first time. The gate leakage behaviour of novel MOSFET structure has been investigated with help of compact analytical model and Sentaurus Simulation. Fringing gate electric field through the dielectric spacer induces inversion layer in the non-overlap region to act as extended S/D region. It is found that optimal Source/Drain-to-Gate Non-overlapped and high-k spacer structure has reduced the gate leakage current to great extent as compared to those of an overlapped structure. Further, the proposed structure had improved off current, subthreshold slope and DIBL characteristic. It is concluded that this structure solves the problem of high leakage current without introducing the extra series resistance.  相似文献   

14.
A thermodynamic variational model derived by minimizing the Helmholtz free energy of the MOS device is presented. The model incorporates an anisotropic permittivity tensor and accommodates a correction for quantum-mechanical charge confinement at the dielectric/substrate interface. The energy associated with the fringe field that is adjacent to the oxide is of critical importance in the behavior of small devices. This feature is explicitly included in our model. The model is verified using empirical and technology-computer-aided-design-generated capacitance-voltage data obtained on MOS devices with ZrO2, HfO2, and SiO2 gate insulators. The model includes considerations for an interfacial low-k interface layer between the silicon substrate and the high-k dielectric. This consideration enables the estimation of the equivalent oxide thickness. The significance of sidewall capacitance effects is apparent in our modeling of the threshold voltage (Vth) for MOS capacitors with effective channel length at 30 nm and below. In these devices, a variation in high-k permittivity produces large differences in Vth. This effect is also observed in the variance of Vth, due to dopant fluctuation under the gate.  相似文献   

15.
研究了淀积后退火(PDA)工艺(包括退火环境和退火温度)对高介电常数(k)HfO2栅介质MOS电容(MOSCAP)电学特性的影响.通过对比O2和N2环境中,不同退火温度下的HfO2栅介质MOSCAP的C-V曲线发现,高kHfO2栅介质在N2环境中退火时具有更大的工艺窗口.通过对HfO2栅介质MOSCAP的等效氧化层厚度(dEOT)、平带电压(Vfb)和栅极泄漏电流(Ig)等参数进一步分析发现,与O2环境相比,高kHfO2栅介质在N2环境中PDA处理时dEOT和Ig更小、Vfb相差不大,更适合纳米器件的进一步微缩.HfO2栅介质PDA处理的最佳工艺条件是在N2环境中600℃下进行.该优化条件下高kHfO2栅介质MOSCAP的dEOT=0.75 nm,Vnb=0.37 V,Ig=0.27 A/cm2,满足14或16 nm技术节点对HfO2栅介质的要求.  相似文献   

16.
In this paper, we show that through electrical characterization and detailed quantum simulations of the capacitance-voltage and current-voltage (I-V) characteristics, it is possible to extract a series of material parameters of alternative gate dielectrics. We have focused on HfO2 and HfSiXOYNZ gate stacks and have extracted information on the nature of localized states in the dielectric responsible for a trap-assisted tunneling (TAT) current component and for the temperature behavior of the I-V characteristics. Simulations are based on a one-dimensional Poisson-Schroumldinger solver capable to provide the pure tunneling current and TAT component. Energy and capture cross section of traps responsible for TAT current have been extracted  相似文献   

17.
We have proposed a novel poly-Si/a-Si/HfSiON transistor to enhance reliabilities without performance degradation for a 65-nm-node low standby power (LSTP) application. By insertion of a thin amorphous-Si layer between the Poly-Si gate electrode and HfSiON, both phosphorus penetration from gate electrode and a reaction at gate electrode/HfSiON interface are successfully suppressed, so that positive bias temperature instability, one of the biggest issues for high-k gate dielectric, is drastically improved by two orders of magnitude. By carefully optimizing the gate stack structure of HfSiON, the HfSiON device can satisfy both lower gate leakage and gate-induced drain leakage at the same time. As a result, an excellent Ion- Istandby (= Ig + loff) characteristic can be achieved, compared to the conventional SiON device. The a-Si insertion technique can realize the combination between the high-k gate dielectric and Poly-Si for future LSTP applications.  相似文献   

18.
《Microelectronics Reliability》2015,55(11):2183-2187
Ultra-low effective oxide thickness (EOT) Ge MOS devices with different HfAlO/HfON stacks and sintering temperatures are investigated in this work. The suppression of gate leakage current and improvement of reliability properties can be achieved by either stacked gate dielectrics or a low sintering temperature. Especially, the qualities of the interface and high-k gate dielectric in Ge devices are significantly improved through a low sintering temperature. A 0.5 nm HfAlO/2.5 nm HfON gate stack and a sintering temperature at 350 °C are the suitable conditions to achieve low EOT, gate leakage, and good reliability for Ge MOS devices.  相似文献   

19.
从器件结构和能带的角度分析了提高非易失性存储器性能的可能途径,建立了纳米晶浮栅结构的存储模型,并在模型中考虑了量子限制效应对纳米晶存储性能的影响.基于模型计算,分析了纳米晶材料、高k隧穿介质材料及其厚度对纳米晶浮栅结构存储性能的影响.同时,制作了MIS结构(Si/ZrO2/Au Ncs/SiO2/Al)的存储单元,针对该存储单元的电荷存储能力和电荷保持特性进行测试,并对测试结果进行分析.  相似文献   

20.
This paper reports the gate-source (drain)/source (drain)-gate capacitance behavior of 100-nm fully depleted silicon-on-insulator CMOS devices with HfO/sub 2/ high-k gate dielectric considering vertical and fringing displacement effects. Based on the two-dimensional simulation results, a unique two-step C/sub S(D)G//C/sub GS/ versus V/sub G/ curve could be identified for the device with the 1.5-nm HfO/sub 2/ gate dielectric due to the vertical and fringing displacement effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号