首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
聚丙烯腈基碳纤维原丝中氧元素含量较低,约为1%~2%,含水率约0.6%~1.2%,由于原丝具有易吸水特性,吸入的水分将增加氧元素含量、增加试样质量,影响最终氧元素含量的检测结果。考察了仪器基线、干燥、标准样品称样量对原丝氧元素含量测量结果的影响,结果表明:称样量不宜过高,且应分开质量梯度;为防止基线漂移,建立标线后应尽快进行试样检测;制样前试样应烘干,且需放在铝盒内以防止吸水增加试样质量而引起误差。  相似文献   

2.
聚丙烯腈基碳纤维市场分析与预测   总被引:6,自引:2,他引:6  
本文介绍了国内外聚丙烯腈基碳纤维装置的生产能力和碳纤维的市场需求情况,提出了国内碳纤维所面临的挑战,并对如何发展国内碳纤维提了一些建议。  相似文献   

3.
国内外聚丙烯腈基碳纤维市场分析   总被引:5,自引:0,他引:5  
介绍国内外聚丙烯腈基碳纤维生产能力和消费现状,对2007年、2010年国内外聚丙烯腈基碳纤维需求进行了预测。针对国内聚丙烯腈基碳纤维工业存在的问题提出了建议。  相似文献   

4.
聚丙烯腈基碳纤维原丝   总被引:8,自引:0,他引:8  
认为碳纤维的品质在很大程度上决定于原丝。工业上,碳纤维原线目前仍以聚丙烯腈基长丝为主。制作优良品质原丝的重要因素有聚合物化学组成、分子量、原丝洁净程度、纺丝方法及工艺、拉伸工艺、原丝致密化程度、油剂等。综述了几家原丝制造商各自拥有的技术特色。并举例说明了其中的典型技术。  相似文献   

5.
6.
通过实验证实了用改变石墨化条件和石墨化炉的方法,可制得国产高模量(>400GPa)PAN基碳纤维  相似文献   

7.
8.
9.
10.
在分析聚丙烯腈基碳纤维国内外市场现状的基础上,预测分析国内外市场供需格局。文章认为2011—2020年我国聚丙烯腈基碳纤维产业进入一个快速增长的时期,整体行业的发展重点集中在提高相关高性能PAN原丝质量、提升工艺技术和生产装备自主创新能力,积极发展碳纤维循环利用产业。  相似文献   

11.
以东丽T700SC-12K碳纤维为样品,详细研究了碳纤维复丝拉伸测试过程中影响制样的因素,主要包括环境温度和湿度、胶液配比、浸胶时间、加强片以及样条和加强片固化温度。结果表明:随湿度增加,碳纤维拉伸强度下降;配置胶液时需选择合适的配比;浸胶时间长短对碳纤维拉伸强度影响不大;加强片厚度选择要适中;样条和加强片固化温度高会造成碳纤维拉伸性能的下降。  相似文献   

12.
加捻对T800碳纤维拉伸性能的影响   总被引:1,自引:0,他引:1  
要通过对日本东丽1700、T800碳纤维复丝拉伸性能的表征主要研究了加捻对,T800碳纤维拉伸性能的影响。研究结果表明:采用浸胶后加捻的方式有助于改善T800碳纤维的拉伸性能,合适的捻度可使其拉伸强度提高5%,断裂延伸率提高10%。并通过对rr800碳纤维干纱加捻的研究基本确定了T800碳纤维的临界捻度为15n/m。  相似文献   

13.
石墨/碳纤维/聚丙烯高强导热材料的研究   总被引:5,自引:0,他引:5  
陶国良  涂善东 《中国塑料》2004,18(11):32-35
采用聚丙烯、石墨、碳纤维 (CF)制备出满足实际应用要求的高导热、高强度复合材料。实验结果表明 ,石墨和碳纤维在基体中的合理分布能显著提高复合材料的导热性能和力学性能。当聚丙烯和石墨的质量比为 5 0 /5 0时 ,添加 3 .3 3 %的碳纤维 ,其热导率为 2 .1W /(m·K) ,拉伸强度达到 5 1.49MPa。  相似文献   

14.
分析了影响玻璃纤维轻质短切毡拉伸强力的各种因素,讨论生产过程中浸润剂与纤维的匹配性、粉末粘结剂的选择、单位面积质量均匀性控制、喷雾器流量控制等工艺因素变化对毡片拉伸强力的影响,通过对这些因素进行深入的分析和研究,提出了合理的解决方案。  相似文献   

15.
The failure mechanisms of a composite, consisting of continuous, aligned, high strength, polyacrylonitrile (PAN) based carbon fibre in an epoxy resin, under uniaxial tension, have been studied. In order to study the effect of the interphase/interface strength, six different levels of an electrochemical fibre surface treatment were used. Single tows containing approximately 12,000 treated carbon fibres were impregnated to produce composite rods with a fibre volume fraction of 0.55. Lengths of this impregnated tow were also set in the centre of glass-fibre/epoxy resin composite coupons which were used to study the mechanisms of failure of the embedded tows. Acoustic emission was used to monitor all samples and bundle failure was found to occur after a build-up of sub-critical damage events as previously modelled.1 Microdebond tests demonstrated an initial increase of interfacial strength which levelled out at the higher levels. In impregnated samples with high surface treatments, catastrophic failure occurred with the crack propagating approximately perpendicular to the fibre direction. However, in samples with lower fibre surface treatments, longitudinal splitting (not accounted for in current models), occurred, meaning that a greater length of composite was involved in the final failure process. Acoustic emission has been shown to have an approximately direct relation with the predicted number of single fibre breaks in composite test-pieces; however, there was no significant difference attributable to the different surface treatments. The hybrid test coupons allow a detailed assessment of the failure mechanisms within the impregnated carbon tow. The failure strains of the embedded tow is some 5% higher than that of unsupported tow. The Weibull modulus is of the same order.  相似文献   

16.
The failure mechanisms of a composite, consisting of continuous, aligned, high strength, polyacrylonitrile (PAN) based carbon fibre in an epoxy resin, under uniaxial tension, have been studied. In order to study the effect of the interphase/interface strength, six different levels of an electrochemical fibre surface treatment were used. Single tows containing approximately 12,000 treated carbon fibres were impregnated to produce composite rods with a fibre volume fraction of 0.55. Lengths of this impregnated tow were also set in the centre of glass-fibre/epoxy resin composite coupons which were used to study the mechanisms of failure of the embedded tows. Acoustic emission was used to monitor all samples and bundle failure was found to occur after a build-up of sub-critical damage events as previously modelled.1 Microdebond tests demonstrated an initial increase of interfacial strength which levelled out at the higher levels. In impregnated samples with high surface treatments, catastrophic failure occurred with the crack propagating approximately perpendicular to the fibre direction. However, in samples with lower fibre surface treatments, longitudinal splitting (not accounted for in current models), occurred, meaning that a greater length of composite was involved in the final failure process. Acoustic emission has been shown to have an approximately direct relation with the predicted number of single fibre breaks in composite test-pieces; however, there was no significant difference attributable to the different surface treatments. The hybrid test coupons allow a detailed assessment of the failure mechanisms within the impregnated carbon tow. The failure strains of the embedded tow is some 5% higher than that of unsupported tow. The Weibull modulus is of the same order.  相似文献   

17.
拉伸强度与弯曲强度的关系及弯曲强度尺寸效应   总被引:2,自引:0,他引:2  
本文研究了材料的破坏发生区、拉伸强度与弯曲强度的关系及弯曲强度的尺寸效应。拉伸及弯曲强度的关系为σ_t=σ_b(1-△/h),弯曲强度尺寸效应表现为σ_(bo)/σ_b=(1-△/h)/(1-△/h_0)。本文研究为精确测试材料拉伸强度提供了简便的方法,同时提供了破坏发生区的测试方法。  相似文献   

18.
依据GB/T 3362—2017《碳纤维复丝拉伸性能试验方法》和JJF1059.1—2012《测量不确定度评定与表示》的要求,以国产T800级碳纤维复丝为试样,对其拉伸强度测量不确定度进行了评定.结果表明:国产T800级碳纤维拉伸强度的扩展不确定度结果为(5923±228)MPa,主要来源为线密度计算和测量结果重复性;...  相似文献   

19.
水分散型聚氨酯胶膜拉伸强度的影响因素研究   总被引:2,自引:0,他引:2  
在合成性能优异的水分散型聚氨酯的基础上,系统地研究了初聚NCO/OH、聚酯多元醇分子量、聚酯类型、TMP%、扩链剂种类和用量、COOH%对胶膜拉伸强度的影响。  相似文献   

20.
Tensile strength and creep behavior of a two-dimensional (2D) laminate carbon–carbon composite (C/C) were examined from room temperature to 2773 K in an inert atmosphere. The tensile strength of the C/C was monotonically enhanced with increasing test temperatures. In particular, significant improvement was observed at temperatures higher than 1773 K. In this temperature range, nonlinear stress–strain curves were observed at low deformation rates, but with increasing test speed, the stress–strain curves became linear until total fracture. The source of the apparent nonlinearity was thus concluded to be creep deformation, which appeared from 1773 K. Two ruling mechanisms for the strength enhancement of the C/C at elevated temperatures were identified. The first source was degassing of absorbed water, which had a dominant influence on the strength enhancement up to 1773 K. The second was creep deformation. This phenomenon was notable at temperatures higher than 1773 K, and produced much larger enhancement than the degassing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号