首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The films of poly(glycolic acid) grafted chitosan were prepared without using a catalyst to improve the degradable property of chitosan. The films were characterized by Fourier transform-infrared spectroscopy and X-ray photoelectron spectroscopy (XPS). The degradation of the poly(glycolic acid) grafted chitosan films were investigated in the lysozyme solution. In vitro degradation tests revealed that the degradation rate of poly(glycolic acid) grafted chitosan films increased dramatically compared with chitosan. The degradation rate of poly(glycolic acid) grafted chitosan films gradually increased with the increasing of the molar ratio of glycolic acid to chitosan. Additionally, the poly(glycolic acid) grafted chitosan films have good biocompatibility, as demonstrated by in vitro cytotoxicity of the extraction fluids. The biocompatible and biodegradable poly(glycolic acid) grafted chitosan would be an effective material with controllable degradation rate to meet the diverse needs in biomedical fields.  相似文献   

2.
Composite scaffolds of poly(D,L-lactic acid) (PDLLA) with bioactive wollastonite were fabricated by the conventional solvent casting-particulate leaching method. The pore structures and morphology of the scaffolds were determined by scanning electron microscopy (SEM). The bioactivity of the composites was evaluated by soaking in a simulated body fluid (SBF), and the formation of the hydroxyapatite (HAp) layer was determined by SEM and energy-dispersive spectrometer. The results showed that the wollastonite/PDLLA composites were bioactive as it induced the formation of HAp on the surface of the composite scaffolds after soaking in SBF for seven days. In addition, pH and ion concentration changes of SBF solutions with composite scaffolds were examined. The results showed that the composites could release Ca and Si ions, which could neutralize the acidic degradation by-products of the PDLLA, and stabilize the pH of the SBF solutions between 6.7 and 7.2 within a three-week soaking period. Furthermore, the measurements of the water contact angles suggested that incorporation of wollastonite into PDLLA could improve the hydrophilicity of the composites and the enhancement was dependent on the wollastonite content. All these results suggest that incorporation of wollastonite into PDLLA might be a useful approach for the preparation of composite scaffolds for tissue repair and tissue-engineering applications.  相似文献   

3.
The nano-sized hydroxyapatite (n-HA) was incorporated into poly(d,l-Lactide) (PDLLA) to form a bioactive and biodegradable composite for application in hard tissue replacement and regeneration. Thin film of PDLLA composite containing 20 mass% of n-HA fillers was successfully developed through integration of solvent co-blending and hot pressing techniques. firstly, n-HA and PDLLA were chemically synthesized, respectively, then mixed together and homogeneously dispersed in N,N-dimethyl formamide(DMF) solvent, finally, the dried blended hybrid containing PDLLA matrix and n-HA fillers was put into the mould and compacted by hot-pressing machine under 8 MPa pressure at 110 °C for 15 min. In vitro studies were conducted using the simulated body fluid(SBF). Composite specimens were soaked in SBF from 1 day to 21 days prior to surface analysis. Results obtained from scanning electron microscopy(SEM) examination, Energy dispersive X-ray detector(EDX) analysis and X-ray diffraction (XRD) analysis showed that a layer of non-stoichiometric apatite formed within 7 days on HA/PDLLA composite surface after its immersion in SBF, demonstrating moderate in vitro bioactivity of n-HA/PDLLA composite, though a moderate rate of apatite formation in SBF was found on initial stage of immersion periods for n-HA/PDLLA composite, compared to the other biomaterial composite. This type of composite film exhibited certain desirable bioactive characteristics, and they are promising bone candidates to develop novel bioactive composites for biomedical application.  相似文献   

4.
The objective of this study was to surface modify the poly (D, L-lactic acid) (PDLLA) films and assess the effects of the modified surfaces on the functions of osteoblasts cultured in vitro. A layer-by-layer (LBL) self assembly technique, was used leading to the formation of multilayers on the PDLLA film surfaces. Chitosan (Chi) and poly (styrene sulfonate, sodium salt) (PSS) were utilized as polycation and polyanion in this study, respectively. The layer structure was investigated by using X-ray photoelectron spectroscopy (XPS) and water contact angle measurement, respectively. XPS analysis displayed the presence of chitosan on PDLLA surface. A full coverage of coating with PSS/Chi layers was achieved on the PDLLA surface only after the deposition layers of PEI/(PSS/Chi)2. These results showed that PDLLA films could be modified with PSS/Chi pairs which may affect the biocompatibility of the modified PDLLA films. To confirm this hypothesis, cell proliferation, cell viability as well as alkaline phosphtase activity of osteoblasts on layer-by-layer modified PDLLA films as well as control samples were investigated in vitro. The proliferation of osteoblasts on modified PDLLA films was found to be greater than that on control (p < 0.05 and p < 0.01) after 1, 4 and 7 days culture, respectively. Cell viability measurement showed that the PSS/Chi modified PDLLA films have higher cell viability (p < 0.01) than control. Osteoblast differentiation function (ALP) on LBL-modified PDLLA film was found significantly higher (p < 0.01) than that of virgin PDLLA films. These data suggests that PSS/Chi pair was successfully employed to surface modify PDLLA film via a layer-by-layer technique, and enhanced its cell biocompatibility.  相似文献   

5.
In the present study, the functions of rat calvaria osteoblasts on baicalin-modified poly(D,L-lactic acid) (PDLLA) films were investigated in vitro. The surface characteristics of surfaces (both modified and control) were investigated by water contact angle measurement and electron spectroscopy for chemical analysis (ESCA). Cell morphologies on these surfaces were examined by scanning electron microscopy (SEM). Cell adhesion and proliferation were used to assess cell growth on the modified and control surfaces. The MTT assay was used to determine cell viability and alkaline phosphatase (ALP) activity was performed to evaluate differentiated cell function. Compared to control films, cell attachment of osteoblasts on baicalin-modified PDLLA film was significantly higher (P<0.05 and P<0.01) after 6 h and 8 h culture, and cell proliferation was also significantly greater (P<0.05 and P<0.01) at the end of 4th and 7th day, respectively. The MTT assay suggested that the cell viability of osteoblasts cultured on baicalin-modified PDLLA film was significantly higher (P<0.05) than that seeded on the control. Meanwhile, the ALP activity of osteoblasts cultured on modified films was also considerably enhanced (P<0.01) compared to that found on control. These results revealed that the biocompatibility PDLLA could be improved by surface modification with baicalin.  相似文献   

6.
In this work, we have deposited poly(aniline-co-m-aminobenzoic acid) on poly(vinyl alcohol) (PVA) by in situ polymerization. The polymerization was effected within maleic acid (MA) cross-linked PVA hydrogel. The copolymer was obtained by oxidative polymerization of aniline hydrochloride and m-aminobenzoic acid using ammonium persulfate as an oxidant. Instead of conventional solution polymerization, here synthesis was carried out on APS soaked MA cross-linked PVA (MA–PVA) film where the polymer was in situ deposited in its conducting form. The composite film was characterized by Fourier transform infra red (FT–IR) and ultraviolet visible (UV–VIS) spectroscopy and electrical measurements. Surface morphology of the composite films was studied by field emission scanning electron microscopy (FESEM). The variation of conductivity of the films was studied.  相似文献   

7.
Development of nano‐cellulose has fascinated a substantial attention for last few decades because of their exceptional and potentially useful features. Herein, nano‐crystalline cellulose has successfully been prepared from local cotton yarn via acid hydrolysis. Both X‐ray diffraction and scanning electron microscopy showed improvement in crystallinity of nano‐crystalline cellulose on acid hydrolysis of cotton yarn. The prepared nano‐crystalline cellulose has been used for the fabrication of poly(lactic acid) composite films using solution casting approach. The prepared composite films were characterized using advanced analytical techniques. The differential scanning calorimetry analysis, moreover, showed that on incorporating nano‐crystalline cellulose in the poly(lactic acid) matrix, glass transition temperature increased; whereas, melting temperature and cold crystallization temperature decreased. The decreasing value of crystallization temperature indicated an enhancement in chain mobility of composite films. The mechanical analysis showed that the composite films were stronger and more flexible than the pure poly(lactic acid) films.  相似文献   

8.
In this study ZnO nanoparticles were prepared by the Pechini method from a polyester by reacting citric acid with ethylene glycol in which the metal ions are dissolved, and incorporated into blend films of chitosan (CS) and poly (vinyl alcohol) (PVA) with different concentrations of polyoxyethylene sorbitan monooleate, Tween 80 (T80). These films were characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), swelling degree, degradation of films in Hank's solution and the mechanical properties. Besides these characterizations, the antibacterial activity of the films was tested, and the films containing ZnO nanoparticles showed antibacterial activity toward the bacterial species Staphylococcus aureus. The observed antibacterial activity in the composite films prepared in this work suggests that they may be used as hydrophilic wound and burn dressings.  相似文献   

9.
A series of biodegradable polymers were prepared by solution coprecipitation of poly(para-dioxanone) (PPDO) and poly(d,l-lactide) (PDLLA) in various blend ratios. Samples were compression molded into bars using a platen vulcanizing press. The in vitro hydrolytic degradation of PPDO/PDLLA blends was studied by examining the changes in weight, water absorption, tensile strength, breaking elongation, thermal properties, and morphology of the blends in phosphate buffered saline (PBS; pH 7.44) at 37 °C for 8 weeks. During the hydrolytic degradation, the weight loss and water absorption increased significantly for all samples, whereas the hydrolysis rate varied with the blend composition. The weight loss of PPDO/PDLLA 80/20, which showed the smallest degradation rate, was lower than that of pure PPDO for almost all of the hydrolytic degradation period. The results showed that the blend composition played an important role in determining the degradation behaviors of blends.  相似文献   

10.
The objective of this study was to investigate the effects of naturally occurring amniotic fluid modified poly(d,l-lactic acid) (PDLLA) film on the culture of rat calvaria osteoblast. The characteristics of surfaces (both modified and control) were examined by contact angle measurement and electron spectroscopy for chemical analysis (XPS). Cell adhesion and proliferation were used to assess the cell behavior on modified films and control one. MTT assay was used to determine cell viability and alkaline phosphatase (ALP) activity was taken to evaluate differentiated cell function. Compared with the untreated films, cell adhesion of osteoblast was significantly higher (P < 0.05) than that found on control, and osteoblast proliferation was also greater than control one (P < 0.01) at the time interval of 4 and 7 days. Moreover, the alkaline phosphatase (ALP) activity exhibited statistic difference (P < 0.05) and cell viability demonstrated significant difference (P < 0.01) between amniotic fluid modified PDLLA films and control one. These results suggested that amniotic fluid was a suitable material when used to modify PDLLA in order to improve its biocompatibility.  相似文献   

11.
A novel nerve repairing material poly [LA-co.(GIc-alt-Lys)] (PLGL) was synthesized. The viability and growth of Schwann cells (SCs) co-cultured With poly (D, L- lactic acid) (PDLLA) films (control group) and PLGL films were evaluated by MTT assay and SEM observation. Then, contact angle measurement, histological assessment and enzyme-linked immunosorbent assay (ELISA) testing on inflammatory-related cyto- kines such as IL-10 and TGF-β1 were performed. The results showed that, compared with PDLLA, PLGL films possesses better hydrophilicity, biocompatibility, degradation property and less inflammatory reaction. The present study indicated that PLGL scaffolds would meet the requirements of artificial nerve scaffold and have a potential application in the fields of nerve regeneration.  相似文献   

12.
In order to improve filler dispersion and phase compatibility between poly(d,l-lactide) (PDLLA) and inorganic bioactive glass (BG) particles, and to enhance the mechanical properties of PDLLA/BG composites, the silane coupling agent 3-glycidoxypropyltrimethoxysilane (KH570) was used to modify the surface of BG particles (represented by KBG). The structure and properties of PDLLA/BG and PDLLA/KBG composites were investigated by mechanical property testing and scanning electron microscopy (SEM). This study demonstrated that the Guth and Gold models can be combined to predict the Young’s modulus of the composites. The Pukanszky modulus showed that the interaction parameter B of PDLLA/KBG composites was higher than that of the PDLLA/BG, which indicates that there is a higher interfacial interaction between the PDLLA and KBG. The composites were incubated in simulated body fluid (SBF) at 37°C to study the in vitro degradation and bioactivity of the composites and to detect bone-like apatite formation on their surfaces.  相似文献   

13.
聚乳酸/乙基纤维素复合膜的制备及其性能   总被引:10,自引:1,他引:9       下载免费PDF全文
以烯基琥珀酸酐( ASA) 作为新型增塑剂, 使用三氯甲烷作为聚乳酸( PLA) 和乙基纤维素( EC) 的共溶剂, 采用溶液浇铸法成功制备了聚乳酸/ 乙基纤维素复合膜。用红外光谱( FT IR) 、X 射线衍射(XRD) 表征了复合膜结构, 并测试了其吸水性和力学性能。FTIR 测试结果显示, 复合膜中存在强烈的氢键相互作用。XRD 表明,ASA 显著提高了PLA 和EC 2 种高聚物的界面黏合性。力学测试结果表明, ASA 对该复合膜具有良好的增塑效果。当膜中PLA 质量分数[ 37%时, PLA 对复合膜起增强作用。复合膜的吸水性随ASA 含量的增大而降低, 随PLA 含量的增大而提高。该复合膜作为一种潜在的药物缓释材料, 将具有广阔应用前景。   相似文献   

14.
Titanium dioxide (TiO2) nanoparticles were investigated for bone tissue engineering applications with regard to bioactivity and particle cytotoxicity. Composite films on the basis of poly(d,l lactid acid) (PDLLA) filled with 0, 5 and 30 wt% TiO2 nanoparticles were processed by solvent casting. Bioactivity, characterised by formation of hydroxyapatite (HA) on the materials surface, was investigated for both the free TiO2 nanoparticles and PDLLA/TiO2 composite films upon immersion in supersaturated simulated body fluid (1.5 SBF) for up to 3 weeks. Non-stoichiometric HA nanocrystals (ns-HA) with an average diameter of 40 nm were formed on the high content (30 wt% TiO2) composite films after 2 weeks of immersion in 1.5 SBF. For the pure PDLLA film and the low content composite films (5 wt% TiO2) trace amounts of ns-HA nanocrystals were apparent after 3 weeks. The TiO2 nanopowder alone showed no bioactivity. The effect of TiO2 nanoparticles (0.5–10,000 μg/mL) on MG-63 osteoblast-like cell metabolic activity was assessed by the MTT assay. TiO2 particle concentrations of up to 100 μg/mL had no significant effect on MG-63 cell viability.  相似文献   

15.
Carbon black/poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (CB/PEDOT:PSS) composite films have been prepared by a spin-coating method. The morphology of the composite films was investigated by field emission scanning electron microscopy and atomic force microscopy. The thermoelectric properties of CB/PEDOT:PSS composite films were measured at room temperature. As the content of CB increased from 0 to 11.16 wt%, the electrical conductivity of the composite films first increased sharply and then decreased, while the Seebeck coefficient increased slowly. A highest power factor of 0.96 μWm?1 K?2 was obtained.  相似文献   

16.
Bioresorbable materials are extensively used for a wide range of biomedical applications. Accurately modifying and evaluating the degradation rate of these materials is critical to their performance and the controlled release of bioactive agents. The aim of this work was to modify the physical properties, degradation rate and drug delivery characteristics of thin films for medical applications by blending poly(dl-lactic acid) (PDLLA), poly(l-lactide-co-glycolide) (PLGA) and poly(ε-caprolactone) (PCL). The thin films were prepared using solvent casting and compression moulding and the in vitro degradation study was performed by immersing the films in a phosphate-buffered saline at elevated temperature for a period of 4 weeks. The degradation rate of the materials was analysed by differential scanning calorimetry, tensile testing and weight loss studies. The thermal analysis of the blends indicated that the presence of PLGA or PDLLA in the film resulted in increased degradation of the amorphous regions of PCL. It was observed that the samples consisting of PDLLA with PCL demonstrated the greatest weight loss. The decrease in mechanical properties observed for both sets of polymer blends proved to be similar. The solvent cast technique was selected as the most appropriate for the formation of the polymer/drug matrices, due to the potentially adverse thermal processing effects associated with compression moulding. It was found that modulation of drug release was achievable by altering the ratio of PCL to PDLLA or PLGA in the thin film blends.  相似文献   

17.
This study is derived from the innate concerns of electrospun poly(DL-lactide) (PDLLA) fibers as tissue engineering scaffolds: hydrophobic surface, surface erosion and dimensional shrinkage, which are not favorable to trigger the initial adhesion and further growth and population of cells. Blending electrospinning of PDLLA and poly(ethylene glycol) (PEG) with different PEG contents was evaluated for optimal tissue engineering scaffolds. The surface hydrophilicity was improved, and the degradation patterns of PDLLA/PEG mats changed from surface erosion to bulk degradation with the increase in PEG contents. The dimensional shrinkage was alleviated through the formation of crystal regions of PEG in the fiber matrix. The PDLLA/PEG fibrous mats were slightly weakened with the increase in the PEG contents, but a significant decrease in the tensile strength could be found for those with PEG contents of over 40%. Human dermal fibroblasts (HDFs) interacted and integrated well with the surrounding fibers containing 20 and 30% PEG, which provided significantly better environment for biological activities of HDFs than electrospun PDLLA mats. It indicated that electrospun mats containing 30% PEG exhibited the most balanced properties, including moderately hydrophilic surface, minimal dimensional changes, adaptable bulk biodegradation pattern and enhancement of cell penetration and growth within fibrous mats.  相似文献   

18.
赵媛  陈宜昭  王娟  黄崇杏 《包装工程》2016,37(11):20-26
目的研究纳米纤维素/聚乳酸(NCC/PLA)复合薄膜在不同降解条件下的降解情况。方法在p H值为3,7,11的溶液及紫外光照射条件下,降解自制的复合薄膜,通过测失重率、扫描电子显微镜观察、X射线光电子能谱分析等手段,分析p H值、光照和NCC的添加与复合材料降解能力间的关系,研究其降解机理,并与纯PLA薄膜对比。结果 NCC/PLA复合薄膜在碱性条件下质量损失最快,酸性稍慢,中性更慢,紫外光照射下最慢,复合薄膜质量损失均比纯PLA薄膜多。在p H值为3和7的溶液及紫外光照射降解后,NCC/PLA复合薄膜氧碳原子数量的比值均比未降解时增大,分别提高了35.16%,36.66%,38.65%。结论 NCC的添加提高了NCC/PLA复合薄膜的降解性能,在不同降解过程中,薄膜表面C原子所占比例减少,相对地O原子所占比例增加,氧碳原子数量的比值增大。  相似文献   

19.
The purpose of this study was to prepare poly(DL‐lactic acid) (PDLLA)/Bioglass® composites of foam‐like structure, to measure the degree of bioactivity of the composites by studying the formation of hydroxyapatite (HA) after immersion in simulated body fluid (SBF) and to test the initial attachment of human osteoblasts within the porous network. It was found that crystalline HA formed on the Bioglass® coated PDLLA foams after 7 days of immersion in SBF. HA formed also on the surfaces of non‐coated PDLLA foams, however the rate and amount of HA formation were much lower than in the composites. The rapid formation of HA on the Bioglass®/PDLLA foam surfaces confirmed the high bioactivity of these materials. Osteoblasts attached within the porous network throughout the depth of the foams. Cell density was found to be higher in the PDLLA/Bioglass® composites compared to the pure PDLLA foams. The composite foams developed here exhibit the required bioactivity to be used as scaffolds for bone tissue engineering.  相似文献   

20.
Yajie Yang  Jianhua Xu 《Thin solid films》2008,516(6):1191-1196
The self-assembly of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) nanoparticles at an air/water interface was achieved by means of the electrostatic force between an octadecylamine (ODA) monolayer and PEDOT-PSS nanoparticles. A surface pressure (π)-area (A) isotherm and X-ray photoelectron spectroscopy of the composite film were used to confirm the electrostatic force between the SO3 group of PSS and the NH4+ group of aliphatic amines. Monolayer and multilayer composite films of ODA/PEDOT-PSS and ODA-stearic acid (SA)/PEDOT-PSS were fabricated. These solid Langmuir-Blodgett films were investigated by the UV-Vis spectrum, atomic force microscopy, and X-ray diffraction method. It is observed that ODA-SA/PEDOT-PSS films had a higher film-forming capability than ODA/PEDOT-PSS films and an ordered multilayer structure was developed. The conductive properties of ODA-SA/PEDOT-PSS LB films were investigated in detail. Factors influencing the film conductivity such as the layer number and surface pressure were discussed and the conductive mechanism was also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号