首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
We have demonstrated a technique to calculate the EMG instantaneous median frequency to assess muscle fatigue during a dynamic exercise commonly prescribed in patients with ACL deficiency. We used Cohen-Posch time-frequency representations to improve upon the variability of the instantaneous median frequency estimates derived using Cohen Class transformations. The technique was applied to surface EMG data recorded from the quadriceps and hamstring muscles of a control subject and a patient with ACL deficiency during a repetitive squat exercise. Instantaneous median frequency values were derived for the knee-extension phases of the exercise. Ensemble average and standard deviation of the instantaneous median frequency were computed for the portion of the cycle associated with the lowest variability of the mechanics  相似文献   

2.
The goal of this study was to determine whether acute stroke survivors demonstrate abnormal synergy patterns in their affected lower extremity. During maximum isometric contractions with subjects in a standing position, joint torques generated simultaneously at the knee and hip were measured, along with associated muscle activation patterns in eight lower limb muscles. Ten acute stroke survivors and nine age-match controls participated in the study. For all joints tested, stroke subjects demonstrated significantly less maximum isometric torque than age-matched control subjects. However, the synergistic torques generated in directions different than the direction that was being maximized were not significantly different between the two groups. According to electromyography (EMG) data, it was found that stroke subjects activated antagonistic muscle groups significantly higher than the control group subjects, suggesting that deficits in joint torque may be at least partially attributable to co-contraction of antagonistic muscles. Our findings suggest that a primary contributor to lower limb motor impairment in acute hemiparetic stroke is poor volitional torque generating capacity, which is at least partially attributable to co-contraction of antagonistic muscles. Furthermore, while we did not observe abnormal torque synergy patterns commonly found in the upper limbs, muscle activation patterns differed between groups for many of the directions tested indicating changes in the motor control strategies of acute stroke survivors.  相似文献   

3.
An understanding of the muscle power contributions to the crank and limb segments in recumbent pedaling would be useful in the development of rehabilitative pedaling exercises. The objectives of this work were to 1) quantify the power contributions of the muscles to driving the crank and limb segments using a forward dynamic simulation of low-power pedaling in the recumbent position, and 2) determine whether there were differences in the muscle power contributions at three different pedaling rates. A forward dynamic model was used to determine the individual muscle excitation amplitude and timing to drive simulations that best replicated experimental kinematics and kinetics of recumbent pedaling. The segment kinematics, pedal reaction forces, and electromyograms (EMG) of 10 muscles of the right leg were recorded from 16 subjects as they pedaled a recumbent ergometer at 40, 50, and 60 rpm and a constant 50 W workrate. Intersegmental joint moments were computed using inverse dynamics and the muscle excitation onset and offset timing were determined from the EMG data. All quantities were averaged across ten cycles for each subject and averaged across subjects. The model-generated kinematic and kinetic quantities tracked almost always within 1 standard deviation (SD) of the experimental data for all three pedaling rates. The uniarticular hip and knee extensors generated 65% of the total mechanical work in recumbent pedaling. The triceps surae muscles transferred power from the limb segments to the crank and the bi-articular muscles that crossed the hip and knee delivered power to the crank during the leg transitions between flexion and extension. The functions of the individual muscles did not change with pedaling rate, but the mechanical energy generated by the knee extensors and hip flexors decreased as pedaling rate increased. By varying the pedaling rate, it is possible to manipulate the individual muscle power contributions to the crank and limb segments in recumbent pedaling and thereby design rehabilitative pedaling exercises to meet specific objectives.  相似文献   

4.
In the present study we introduce a new device for exercise magnetic resonance spectroscopy (MRS). It operates in a standard whole-body scanner. Mechanical exertion unit allows maximal 10° to 15° short-arc knee extensions. The device operates hydraulically and is based on isokinetic movement. The force and work conducted are automatically controlled by the electronic control and computer unit. A small surface coil placed on the vastus medialis muscle allows the collection of spectra without interfering spectra from nearby resting muscles. The force used for the extensions can be followed simultaneously as a curve on the screen in the operator's room and the data is transferred to a personal computer for later analysis. Total work and fatigue percentage are also calculated by the device. It also allows the use of different isokinetic exercise protocols. The measurements of force proved reliable in repeat measurements using an isokinetic test device as a control.This device has been used clinically for over a year, is easy to operate, and offers reliable measurements. It is well suited to trials where muscle energy states versus time are followed since it allows noninvasive simultaneous quantification of muscle performance and collecting MRS spectra at rest, during exercise, and in the recovery phase.  相似文献   

5.
The research into a correlation between joint biomechanics and the action of muscles that act on the limb segment involved during movement has become very important in recent years. However, while the techniques for elaborating the EMG signal and its relationship with the dynamics of movement are described in detail in the literature, from a clinical point of view publications on how these techniques are used for clinical gait analysis applications are scarce. The purpose of dynamic EMG in clinical gait analysis is essentially to define the muscular activity that controls joint movement during gait, as shown by studies carried out on children with cerebral palsy, in which the abnormal pattern of muscle activation is used, for example, as an indication for surgical tendon transfer or lengthening  相似文献   

6.
The analysis of surface electromyographic (EMG) data recorded from the muscles of the back during isometric constant-force contractions has been a useful tool for assessing muscle deficits in patients with lower back pain (LBP). Until recently, extending the technique to dynamic tasks, such as lifting, has not been possible due to the nonstationarity of the EMG signals. Recent developments in time-frequency analysis procedures to compute the instantaneous median frequency (IMDF) were utilized in this study to overcome these limitations. Healthy control subjects with no history of LBP (n=9; mean age 26.3/spl plusmn/6.7) were instrumented for acquisition of surface EMG data from six electrodes on the thoraco-lumbar region and whole-body kinematic data from a stereo-photogrammetric system. Data were recorded during a standardized repetitive lifting task (load=15% body mass; 12 lifts/min; 5-min duration). The task resulted in significant decreases in IMDF for six of the nine subjects, with a symmetrical pattern of fatigue among contralateral muscles and greater decrements in the lower lumbar region. For those subjects with a significant decrease in IMDF, a lower limb and/or upper limb biomechanical adaptation to fatigue was observed during the task. Increases in the peak box acceleration were documented. In two subjects, the acceleration doubled its value from the beginning to the end of the exercise, which lead to a significant increase in the torque at L4/L5. This observation suggests an association between muscle fatigue at the lumbar region and the way the subject manipulates the box during the exercise. Fatigue-related biomechanical adaptations are discussed as a possible supplement to functional capacity assessments among patients with LBP.  相似文献   

7.
Gait usually presents an excellent improvement after total knee replacement. Nevertheless, some abnormalities persist even after a long period of time. The abnormal knee patterns have been attributed to several possible causes, such as implant geometry and surgical technique, posterior cruciate ligament sparing/sacrificing, preoperative "stiff-knee" pattern due to pain and altered biomechanics, weakness of the extensor muscles, preoperative arthritic pattern, proprioceptive deficiency, and multijoint degenerative involvement. Cocontraction of the knee flexors and extensors is a common strategy adopted to reduce strain and shear forces at the joint, but it increases compressive forces and joint loading. Even in patients with an excellent functional score, the duration of the implant may be compromised by an altered neuromuscular control of the knee. In this paper, we report a single case study carried out over two years on a patient that underwent total knee replacement. The aim of this work is to show that quantitative gait analysis is essential to augment the understanding of the mechanisms underlying gait, thus enabling clinicians to adapt the rehabilitation program to the specific patient. Although the limits of single case reports are obvious, we believe that this evaluation methodology could be beneficial for assessing the effectiveness of rehabilitation programs aimed at achieving an active control of the knee during gait through a correct muscular activation pattern.  相似文献   

8.
Concept 2 indoor rowing machine (Concept 2 Inc., USA) was modified for functional electrical stimulation (FES) rowing exercise in paraplegia. A new seating system provides trunk stability and constrains the leg motion to the sagittal plane. A 4-channel electrical stimulator activates the quadriceps and hamstrings in Drive and Recovery phases of the rowing cycle, respectively. Two force-sensing resistors (FSR) on the handle measure the thumb press as the command signal to the electrical stimulator. Optical encoders measure the positions of the seat and handle during rowing. To synchronize the voluntarily controlled upper body movement with the FES controlled leg movement, a novel manual control system was developed. It uses the voluntary thumb presses to control the timing of the stimulation to the paralyzed leg muscles. The manual control system was intuitive and easy to learn and resulted in well-coordinated rowing. Evaluation of the modified rower by paraplegic volunteers showed that it is effective, safe, and affordable exercise alternative for paraplegics.  相似文献   

9.
10.
Electromyography     
The use of electromyography (EMG) to determine the cause of lower back pain is examined. The source and properties of the EMG signal and its analysis are discussed. The fatigue properties of back muscles and their role in back pain are considered. A typical back analysis system is described, and some study results are presented  相似文献   

11.
The knowledge of the behavior of electrically activated muscles is an important requisite for the development of functional electrical stimulation (FES) systems to restore mobility to persons with paralysis. The aim of this work was to develop a model capable of relating electrical parameters to dynamic joint torque for FES applications. The knee extensor muscles, stimulated using surface electrodes, were used for the experimental preparation. Both healthy subjects and people with paraplegia were tested. The dynamics of the lower limb were represented by a nonlinear second order model, which took account of the gravitational and inertial characteristics of the anatomical segments as well as the damping and stiffness properties of the knee joint. The viscous-elastic parameters of the system were identified experimentally through free pendular movements of the leg. Leg movements induced by quadriceps stimulation were acquired too, using a motion analysis system. Results showed that, for the considered experimental conditions, a simple one-pole transfer function is able to model the relationship between stimulus pulsewidth (PW) and active muscle torque. The time constant of the pole was found to depend on the stimulus pattern (ramp or step) while gain was directly dependent on stimulation frequency.  相似文献   

12.
Neuromuscular electrical stimulation was used to evoke isometric knee extension contractions in seven individuals with spinal cord injury (SCI) and the time for knee extension torque to rise and fall was measured across a range of knee angles. The stimulated muscles took more than twice as long to develop 50% of maximum torque at an angle of 15 degrees, compared to an angle of 90 degrees. This time difference comprised both an increased delay before torque rose above resting levels (31 +/- 3 ms at 90 degrees, 67 +/- 24 ms at 15 degrees), and a prolonged duration over which torque was rising (72 +/- 14 ms at 90 degrees, 140 +/- 62 ms at 15 degrees). There was no change, however, in the time taken for torque to fall after cessation of stimulation at different knee angles (58 +/- 5-ms delay, 60 +/- 11-ms fall time). The difference in torque rise time with joint angle has implications for modeling functional activities that differ greatly in their joint angles. This study provides regression equations whereby activation times for the quadriceps muscles of individuals with SCI can be predicted for specific angles of knee flexion.  相似文献   

13.
为了实现康复电刺激系统治疗参数的个性化定制及实时调整,提出了一种基于调制中频电刺激的下肢肌力康复闭环电刺激系统。设计低频调制中频刺激电路,基于遗传算法建立了电刺激参数与膝关节角度之间的支持向量机回归预测模型,并搭建基于模糊内模控制PID的闭环反馈系统,以达到更精确稳定的参数设置效果。通过膝关节运动实验表明,被试者在无痛感的前提下更接近预期的关节运动轨迹,30组膝关节运动角度与预期值最大均方根误差为10.21°,最小均方根误差为5.48°。相比传统低频电刺激,肌电平均振幅具有20μV以上提升。本文提出的电刺激系统参数可实现因人而异,且可根据闭环反馈结果进行实时调整,该系统能有效活化肌肉、提升肌力,在肌力康复步态训练中有较好的应用前景。  相似文献   

14.
The ability to produce various force patterns at the ankle by microstimulation of the gray matter of the spinal cord was investigated in spinalized frogs. We evaluated the recruitment properties of individual spinal sites and found that forces increase linearly with activation level in the low-force range studied, while the structure of the force pattern remains invariant. We also measured the responses produced by coactivation of two spinal sites activated at two pairs of stimulation levels. Responses were measured at the mechanical level by recording forces at the ankle; and, at the muscular level by recording the electromyographic (EMG) activity of 11 hindlimb muscles. We found that for both pairs of activation, the forces under coactivation were the scaled vectorial summation of the individual responses. At the muscular level, rectified and integrated EMGs also summated during coactivation. Numerous force patterns could, thus, be created by the activation of a few individual sites. These results suggest that microstimulation of the circuitry of the spinal cord (higher order neurons than the motoneurons) holds promise as a new functional neuromuscular stimulation technique for the restoration of multi-joint movements  相似文献   

15.
How does the activation of several muscles combine to produce reliable multijoint movements? To study this question, we stimulated up to six sites in muscles, nerves, and the spinal cord. Flexion and extension of the hip, knee, and ankle were elicited in anesthetized and decerebrate cats. The movements occurred largely in the sagittal plane against a constant spring load and covered most of the passive range of motion of the cat's limb. The movements of the end-point (foot) were compared with predictions based on vectorial summation of end-point movements elicited by stimulating single electrodes. The lengths of the movements produced by stimulating more than one site exceeded what was expected from linear summation for small movements (<3 cm) and showed a less than linear summation for large movements (>11 cm). The data were compared with muscle and limb models. Since the deviations from linearity were predictable as a function of distance, adjustments might easily be learned by trial and error. The summation was less complete for spinal stimulation, compared to nerve and muscle stimulation, so spinal circuits do not appear to compensate for the nonlinearities. Movements were elicited from positions of the limb not only in a neutral position, but also in front and behind the neutral position. A degree of convergence was seen, even with stimulation of some individual muscles, but the convergence increased as more muscles were stimulated and more joints were actively involved. This suggests that convergence to an equilibrium-point arises at least partly from muscle properties. In conclusion, there are deviations from linear vectorial summation, and these deviations increase when more muscles are stimulated. The convergence to an equilibrium-point may simplify the computations needed to produce movements involving many muscles.  相似文献   

16.
We investigated the performance of three user interfaces for restoration of cursor control in individuals with tetraplegia: head orientation, electromyography (EMG) from face and neck muscles, and a standard computer mouse (for comparison). Subjects engaged in a 2-D, center-out, Fitts' Law style task and performance was evaluated using several measures. Overall, head orientation commanded motion resembled mouse commanded cursor motion (smooth, accurate movements to all targets), although with somewhat lower performance. EMG commanded movements exhibited a higher average speed, but other performance measures were lower, particularly for diagonal targets. Compared to head orientation, EMG as a cursor command source was less accurate, was more affected by target direction and was more prone to overshoot the target. In particular, EMG commands for diagonal targets were more sequential, moving first in one direction and then the other rather than moving simultaneous in the two directions. While the relative performance of each user interface differs, each has specific advantages depending on the application.   相似文献   

17.
Multidimensional EMG-based assessment of walking dynamics   总被引:1,自引:0,他引:1  
The electromyogram (EMG) provides a measure of a muscle's involvement in the execution of a motor task. Successful completion of an activity, such as walking, depends on the efficient motor control of a group of muscles. In this paper, we present a method to quantify the intricate phasing and activation levels of a group of muscles during gait. At the core of our method is a multidimensional representation of the EMG activity observed during a single stride. This representation is referred to as a "trajectory." A hierarchical clustering procedure is used to identify representative classes of muscle activity patterns. The relative frequencies with which these motor patterns occur during a session (i.e., a series of consecutive strides) are expressed as histograms. Changes in walking strategy will be reflected as changes in the relative frequency with which specific gait patterns occur. This method was evaluated using EMG data obtained during walking on a level and a moderately-inclined treadmill. It was found that the histogram changes due to artificially altered gait are significantly larger than the changes due to normal day-to-day variability.  相似文献   

18.
Most empirical studies concerning rehabilitation yield numerous multidimensional signals (dozens of time variables are obtained for dozens of empirical situations). The purpose of this paper is to suggest a statistical analysis procedure based on: 1) space-time fuzzy windowing; 2) signal behavior characterization within the windows using membership value averages (MVA); and 3) MVA analysis using the multiple correspondence analysis (MCA). A load lifting study provided an example of 78 multidimensional signals including 89 time variables (forces, energy indicators, linear and angular positions, speeds, and accelerations). The main goal of MCA was to compare and contrast biomechanical signals from two lifting modes: "free" and "isokinetic." In the first mode, three loads were tested - light, medium, and heavy. In the second, three speeds were tested - slow, medium, and fast. Thirteen male individuals without disabilities participated in this study. The MCA showed that most of the free load-lifting strategies cannot be used in isokinetic lifting because the constraints of the subject and the environment are different. In addition, as the level of difficulty increases, free lifting became more economical while isokinetic lifting became less economical. These results would appear to indicate that movement strategies used for free lifting cannot be learned using an isokinetic machine during rehabilitation sessions for chronic low back pain. MCA was also suggested as a tool for comparing patients with control individuals. To achieve this aim, the notion of "supplementary data" was introduced.  相似文献   

19.
In the present study, muscle activity was measured after transcranial magnetic stimulation (TMS) was applied over the primary motor cortex during finger tapping. The duration of finger tapping was increased by the application of TMS. A remarkable change in electromyogram (EMG) of hand muscles was also observed during and after finger tapping. The silent period, in which voluntary EMG during the finger tapping was suppressed by TMS, was observed. Integral EMG revealed that TMS increased muscle activity at the completion of the finger tap after silent period. Copyright © 2009 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

20.
INTRODUCTION: Given that we have reached a point in the field of muscle energetics where absolute measurements are warranted to take the area forward, we designed an ergometer, including two force and two displacement transducers, allowing dynamic and isometric knee extension within a MR system and accurate measurements of power output. METHODS: On the basis of repeated measurements, the force and displacement transducers accuracy was 1% for values ranging from 0 to 394 N and 4% for values ranging from 0 to 20 cm. In addition, measurements were not affected by magnetic field. MRS experiments in exercising muscle were conducted in eight subjects. They performed two standardized dynamic alternate leg extension exercises (25 and 35% of MVC) while the corresponding metabolic changes were measured using (31)P-MRS. RESULTS: The mean power output produced during both exercises were 63 +/- 16 and 81 +/- 15 W while the eccentric work was reduced i.e. 12 +/- 14 and 21 +/- 6 W for the moderate and heavy exercise respectively. The corresponding metabolic changes were significant with a 20-40% PCr depletion and an end of exercise pH ranging from 0.02 to 0.70 pH units. CONCLUSION: Overall, the present ergometer allows quadriceps exercise in a MR system and should be useful for future metabolic studies for which reliable and absolute quantification of power output is warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号