首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1、前言河北省保定地区徐水县高岭土产于县城西部丘陵地带的王庄、釜山、大王店和义合庄乡一带,南北长达三十华里,东西约十五华里。西北部与易县瓷土矿相连,西南与满城县瓷土矿相接,构成较大的高岭土矿,为一整体矿区。经地质部门初步勘探,远景储量可达500万吨以上,构成于中型矿田。尤其是义和庄乡的五香坡高岭土矿脉,经有关单位多  相似文献   

2.
在偏高岭土-矿渣基地聚合物中加入纤维改善地聚合物的韧性。用不同龄期样品的抗冲击功、抗折强度、样品受压过程分析和受压样品外貌及断口形貌显微分析等表征纤维对地聚合物的增韧效果。结果表明:BF型化纤可显著提高偏高岭土-矿渣基地聚合物的韧性。80℃养护条件下,BF型化纤掺量为0.7%时,样品3 d和28 d的抗冲击功较同龄期净浆提高了136.38%和188.62%,抗折强度提高了40.30%和37.33%;样品28 d的极限载荷较净浆提高了30.21%,受压破坏时的形变量增加了18.06%,且样品受压破坏的断裂功明显大于净浆的断裂功,极限载荷与失效载荷比值为1.60(净浆为1.13);BF型化纤穿插于硬化体结构内部,具有桥联搭接作用。  相似文献   

3.
以偏高岭土为原料,水玻璃为碱激发剂,化学发泡法制备了偏高岭土地聚合物基轻质材料;研究了不同发泡剂及表面活性剂十二烷基苯磺酸钠对偏高岭土地质聚合物的体积密度及强度的影响,结果表明:随着铝粉、双氧水加入量的增加,体积密度及强度变化明显,发泡效果较好;十二烷基苯磺酸钠加入量为0.2%,双氧水的加入量为0.7%时,铝粉的加入量为0.15%时,体积密度为分别为1.061 g/cm~3、1.035 g/cm~3,强度分别为6.7334 MPa、9.5347 MPa。  相似文献   

4.
以水为模板剂制备功能化介孔地聚合物是近年来地聚合物领域的研究热点之一。为阐明水用量对介孔尺寸、孔隙率及地聚合过程的影响,在水模板法制备介孔地聚合物基础上,采用压汞仪、场发射扫描电镜分析、等温量热法及X射线衍射分析等表征手段研究了水用量对偏高岭土基地聚合物微观结构及其反应过程的影响。结果表明:水用量显著影响碱铝硅酸盐凝胶[N-A-S(H)]初级粒子及二级粒子间堆积的紧密程度,并进而决定地聚合物的最可几孔径和孔隙率,当n(H2O):n(Na2O)(摩尔比)由15.5增至19.5时,其最可几孔径由15.0 nm增至28.7 nm,孔隙率由28.8%增至40.6%;水用量的适量增加对水玻璃缓冲液的p H值和偏高岭土的初始溶解速率和程度无显著影响;水用量增加不仅可以使碱离子易于穿过疏松的凝胶包裹层而增大偏高岭土的总溶解量,还可显著抑制硅、铝质单体及硅铝质低聚体间的缩聚反应。  相似文献   

5.
李盾兴  陈小平  张业  谢鲜梅 《当代化工》2017,(11):2181-2184
以高炉矿渣、偏高岭土、水玻璃和氢氧化钠为主要原料,制备矿粉-偏高岭土体系地聚合物。通过调节矿粉掺量(0%~50%范围内),研究钙组分含量对地聚合物抗压强度、凝结时间、物相组成和微观结构的影响。结果表明:当矿粉掺量为30%时,地聚合物样品310 min初凝,395 min终凝,1、3、7和28 d抗压强度分别达到52.8、73.9、87.1和102.3 MPa,达到快凝、早强和高强的目的。  相似文献   

6.
偏高岭土基地质聚合物的制备和力学性能研究   总被引:1,自引:0,他引:1  
韩丹  车云轩  宋鹏  王琦 《四川水泥》2014,(5):120-123
以高岭土为原料,煅烧为具有火山灰活性的偏高岭土,以NaOH,水玻璃为碱激发剂,标准养护条件下制备偏高岭土基地质聚合物。测试样品的力学性能,并利用XRD、SEM、DSC和TG、FT-IR等测试手段来研究矿物组成、反应机理、微观形貌;结果显示:高岭土的煅烧温度为800℃,煅烧时间2h,水玻璃模数为1.3,碱含量15%条件下,抗压强度最高可达72.10MPa。矿物聚合物的28d抗压强度相比于3d,7d有较大幅度提高。  相似文献   

7.
以偏高岭土为原料,分别以钠水玻璃和钾水玻璃为碱激发剂,制备地聚合物,并对两组地聚合物样品高温陶瓷化特性进行研究.地聚合物样品的XRD、线性收缩、气孔率和抗压强度分析表明,在800~1000℃时,两组地聚合物均呈无定形凝胶状态;1100℃开始,由于粘性烧结,K-基地聚合物开始形成稳定的白榴石陶瓷相,线性收缩达到最大值23%,气孔率达到最小值1.22%,抗压强度提高至47.76 MPa;Na-基地聚合物在1200℃开始出现霞石陶瓷相和大孔莫来石相,气孔率最小值为3.10%,最高抗压强度为34.78 MPa;1300℃开始,两组地聚合物三维网状结构均完全破坏并生成稳定的陶瓷相.  相似文献   

8.
为研究氢氧化钙含量对地聚合物泡沫材料的影响,以粉煤灰、偏高岭土、氢氧化钙为原料,1.4模数的水玻璃作为碱激发剂,双氧水为发泡剂,制备了不同掺量氢氧化钙的地聚合物泡沫材料。并对其力学性能、矿物组成和微观形貌通过抗压强度试验、X射线衍射仪、红外分光光度计和场发射电子扫描显微镜进行检测和表征。试验结果表明,随着氢氧化钙含量的增加,两种地聚合物泡沫材料的抗压强度和干密度也随之增加。XRD分析结果表明原料的无定形相参与反应,FTIR和SEM-EDS结果表明最终的产物是C-A-S-H凝胶和N-A-S-H凝胶的结合体,并且反应程度随着氢氧化钙的增加而增加。  相似文献   

9.
为了探究养护环境对偏高岭土基地聚物干缩开裂特性和力学性能的影响,以不同养护环境为参数,系统研究了不同养护环境对偏高岭土基地聚物性能(抗压强度、收缩)和微观结构的影响。结果表明:温度交替变化环境(冻融循环)对偏高岭土基地聚物的结构影响较大,不利于偏高岭土基地聚物材料性能的发展;低湿度环境有利于体系中水分子排出,从而使形成的凝胶相更致密,有利于抗压强度的发展,但使干缩率和孔隙率增加。在各种养护环境中,干燥养护(温度(20±0.5)℃,湿度(50±5)%)条件下的试样28 d抗压强度达到73.94 MPa,较标准养护(温度(20±0.5)℃,湿度不低于95%)条件下的试样增长了68.77%,28 d干缩率为237.5×10-4,孔隙率达到最高(45.73%)。  相似文献   

10.
以高炉矿渣(BFS)、偏高岭土(MK)、钠水玻璃和石英砂为主要原料,制备MK/BFS基地质聚合物。通过调节偏高岭土和矿渣的比例,研究钙含量对地质聚合物物相、显微结构和抗压强度的影响,研究了材料热稳定性能。结果表明:当钙含量为15%(质量分数)时,地质聚合物的抗压强度达到(93.9±2.2)MPa。在600℃以下,材料的微观结构保持稳定,材料的线收缩率保持在4%以内,在800℃时,有新相生成,并伴随较大的体积变化。  相似文献   

11.
本文提出一种新型偏高岭土基地聚物无机防护涂料.该涂料的基体为偏高岭土基地质聚合物,其有界面结合力强、抗渗性优异的特点,通过选择合适的工艺,加入少量的LDHs新型无机插层材料,以提高该涂料对混凝土的抗碳化性能和抗氯离子渗透性能.通过结合XRD、TG-MS等测试分析技术对该涂料提高混凝土耐久性的微观机理进行了探讨.研究结果表明,此种涂料可以显著提高被涂覆混凝土的抗碳化能力和抗氯离子侵蚀性能,LDHs材料主要通过煅烧处理后的结构重建过程和离子交换实现对碳酸根和氯离子的吸附.  相似文献   

12.
采用γ-缩水甘油醚氧丙基三甲氧基硅烷(KH 560)对偏高岭土基地聚合物进行改性,研究了KH 560用量对改性地聚合物制备的砂浆试件抗压强度、抗折强度、抗冻性能、抗硫酸盐腐蚀性能和结构密实程度的影响,并利用扫描电子显微镜、红外光谱、介孔分析等手段表征了产物结构。结果表明,添加适量KH 560能提高偏高岭土基地聚合物的抗压强度、抗折强度、抗冻性能、抗硫酸盐腐蚀系数和结构密实程度。对于KH 560改性地聚合物来说,随着KH 560用量从1%增至4%,抗压强度和抗折强度均逐渐降低,100次冻融循环后的质量损失率和抗压强度损失率升高,干湿循环28 d后的质量损失率升高、抗硫酸盐腐蚀系数降低,总孔容升高,介孔平均直径增大,结构的密实程度降低;当KH 560用量为1%时,改性地聚合物的耐久性能较佳,抗压强度为43.52 MPa,抗折强度为6.98 MPa, 100次冻融循环后质量损失率为4.47%、抗压强度损失率为17.76%,干湿循环28 d后的质量损失率为0.75%、抗硫酸盐腐蚀系数为0.93,总孔容为0.142 cm2/g,介孔平均直径为7.003 nm。  相似文献   

13.
为揭示偏高岭土基地聚合物的微观孔结构特征并探索介孔地聚合物制备和微孔结构调控途径,采用氮气吸附法研究了偏高岭土基地聚合物的吸附/脱附等温曲线和微观孔结构特征(包括总孔体积、比表面积、孔形状和孔径分布等),并讨论了水玻璃模数和水用量对地聚合物孔结构的影响。结果表明:偏高岭土基地聚合物吸附/脱附等温曲线为IV型,迟滞回线为H1和H3混合型;总孔体积为0.141 8~0.313 6 cm~3/g,比表面积为28.87~53.25 m~2/g,孔径为2~92 nm,其中孔径为2~50 nm的介孔分别占总孔体积和比表面积的97.82%和98.87%;地聚合物中的孔以两端开放的圆柱形孔、平行板狭缝孔为主,同时存在少量一端封闭的圆柱形孔、平行板狭缝孔或墨水瓶孔。调整水玻璃模数和水用量均可在一定范围内调控偏高岭土基地聚合物孔结构。水玻璃模数由1.2增至1.8时,其总孔体积由0.225 3 cm~3/g降至0.141 8 cm~3/g,最可几孔径在13.91~19.56 nm范围;水用量由15.5增至18.5时,其总孔体积从0.221 9 cm~3/g逐渐增至0.313 6 cm~3/g,孔径分布先由水用量为15.5的单峰分布变为双峰分布;水用量增至18.5时,孔径分布显著宽化,最可几孔径消失。水用量比水玻璃模数对偏高岭土基地聚合物孔结构具有更强的调控效应。  相似文献   

14.
本研究以偏高岭土和粉煤灰为原料,以不同模数(0.75、1.00、1.25、1.50)和碱浓度(质量分数)(40%、44%、48%)的钾水玻璃为碱激发剂,微珠、蛭石和珍珠岩为细骨料来制备地聚物砂浆试件.主要通过测试地聚物砂浆试件常温及1000℃高温作用后的抗压强度,探明碱激发剂模数和浓度对砂浆试件力学性能的影响,并利用X...  相似文献   

15.
傅博  杨自祥  白雪玉  程臻赟 《硅酸盐通报》2020,39(10):3115-3120
研究了不同碱当量水玻璃溶液为碱激发剂的偏高岭土基地聚物砂浆的早期收缩和水化放热特性.结合孔隙溶液表面张力和砂浆内部相对湿度计算了地聚物砂浆的毛细管半径及毛细管应力,基于此讨论了地聚物砂浆早期收缩影响机制.结果 表明,新拌阶段收缩主要与偏高岭土颗粒形貌及所处的碱性环境有关,碱当量越高,偏高岭土颗粒吸水量越大,浆体收缩越大.地聚物砂浆凝结硬化阶段收缩主要与毛细管应力有关,高碱当量会导致偏高岭土溶解程度增大,砂浆相对湿度降低,孔隙溶液表面张力增大,从而细化砂浆内部毛细管半径,增大毛细管拉应力,导致收缩变大.  相似文献   

16.
日本石油化工产品产量目前仅次于美国居世界第二位,而发展速度跃居世界首位。日本石油化工的发展是在1955年以后,其特征是石油化工基地的建立。随着1950年日本太平洋岸炼厂开始兴建,相继提出了石油化工的发展计划。1951年日本曹达公司发表从石脑油热裂解发展石油化工的计划,这是日本石油化工计划的开始。1955年日本通产省决定实行“石  相似文献   

17.
18.
以超细偏高岭土(UMK)为原材料,研究了三聚氰胺减水剂(MWR)对碱激发偏高岭土基地质聚合物的流动性能和力学性能的影响.采用流变学方法表征地聚物净浆的流动性,结合凝结时间实验、含水率实验和力学性能实验研究了MWR在地质聚合反应中的作用.通过SEM、FTIR和XRD等分析手段研究反应产物的微观形貌、化学结构和矿物组成,以揭示MWR的作用机理.结果 表明,MWR与UMK相容性不好,MWR掺量为2wt%和4wt%时对地聚物净浆的流动性有一定改善,但掺量6wt%时明显促进了净浆的流动度损失.MWR的掺入改变了地聚物的孔隙结构,促进了水分的散失,从而使抗压强度随MWR掺量的增大而先减小后有所回升.  相似文献   

19.
地质聚合物是一种具有特殊网络结构的新型无机非金属胶凝材料。为了改善地质聚合物的力学性能,采用粉煤灰作为主要原料,液体水玻璃和氢氧化钠作为碱激发剂,将偏高岭土作为填料替代部分粉煤灰,制备了应用偏高岭土的粉煤灰基地质聚合物。对偏高岭土-粉煤灰基地质聚合物进行了扫描电子显微镜、抗折抗压强度以及折压比等表征,研究了偏高岭土-粉煤灰基地质聚合物结构以及强度的影响。结果显示:在粉煤灰基地质聚合物中添加偏高岭土会加快强度的形成,并且提高了粉煤灰基地质聚合物的强度。  相似文献   

20.
采用聚氯乙烯(PVC)树脂与处于地聚合初期凝胶阶段的偏高岭土基地聚物混合、熔融加工的方法制备了PVC/偏高岭土基地聚物复合材料,研究地聚物含量对PVC复合材料加工塑化、力学性能、热性能及断面形貌的影响。发现少量地聚物(如≤8%(wt))的引入可促进PVC树脂的塑化,地聚物分散尺寸较小,在基体中分散较均匀,并与PVC基体有良好的界面结合,可有效发挥地聚物刚性粒子对PVC的增强增韧作用,复合材料有较好的力学性能,其中以4%(wt)的地聚物含量为最佳,其材料的抗冲击强度达到了9.16 kJ?m?2,比纯PVC材料提高了约40%。当地聚物含量过高时,PVC树脂塑化困难,地聚物分散尺寸增大,与PVC基体界面作用减弱,导致复合材料拉伸强度和韧性的下降。随着地聚物含量的增加,PVC复合材料抵抗热变形的能力增加,维卡软化温度升高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号