共查询到3条相似文献,搜索用时 0 毫秒
1.
A comparative study of human exposures to household air pollution from commonly used cookstoves in Sri Lanka 下载免费PDF全文
R. Chartier M. Phillips P. Mosquin M. Elledge K. Bronstein S. Nandasena V. Thornburg J. Thornburg C. Rodes 《Indoor air》2017,27(1):147-159
Solid fuel burning cookstoves are a major source of household air pollution (HAP) and a significant environmental health risk in Sri Lanka. We report results of the first field study in Sri Lanka to include direct measurements of both real‐time indoor concentrations and personal exposures of fine particulate matter (PM2.5) in households using the two most common stove types in Sri Lanka. A purposive sample of 53 households was selected in the rural community of Kopiwatta in central Sri Lanka, roughly balanced for stove type (traditional or improved ‘Anagi’) and ventilation (chimney present or absent). At each household, 48‐h continuous real‐time measurements of indoor kitchen PM2.5 and personal (primary cook) PM2.5 concentrations were measured using the RTI MicroPEM? personal exposure monitor. Questionnaires were used to collect data related to household demographics, characteristics, and self‐reported health symptoms. All primary cooks were female and of an average age of 47 years, with 66% having completed primary education. Median income was slightly over half the national median monthly income. Use of Anagi stoves was positively associated with a higher education level of the primary cook (P = 0.026), although not associated with household income (P = 0.18). The MicroPEM monitors were well‐received by participants, and this study's valid data capture rate exceeded 97%. Participant wearing compliance during waking hours was on average 87.2% on Day 1 and 83.3% on Day 2. Periods of non‐compliance occurred solely during non‐cooking times. The measured median 48‐h average indoor PM2.5 concentration for households with Anagi stoves was 64 μg/m3 if a chimney was present and 181 μg/m3 if not. For households using traditional stoves, these values were 70 μg/m3 if a chimney was present and 371 μg/m3 if not. Overall, measured indoor PM2.5 concentrations ranged from a minimum of 33 μg/m3 to a maximum of 940 μg/m3, while personal exposure concentrations ranged from 34 to 522 μg/m3. Linear mixed effects modeling of the dependence of indoor concentrations on stove type and presence or absence of chimney showed a significant chimney effect (65% reduction; P < 0.001) and an almost significant stove effect (24% reduction; P = 0.054). Primary cooks in households without chimneys were exposed to substantially higher levels of HAP than those in households with chimneys, while exposures in households with traditional stoves were moderately higher than those with improved Anagi stoves. As expected, simultaneously measuring both indoor concentrations and personal exposure levels indicate significant exposure misclassification bias will likely result from the use of a stationary monitor as a proxy for personal exposure. While personal exposure monitoring is more complex and expensive than deploying simple stationary devices, the value an active personal PM monitor like the MicroPEM adds to an exposure study should be considered in future study designs. 相似文献
2.
Household air pollution and personal exposure to nitrated and oxygenated polycyclic aromatics (PAHs) in rural households: Influence of household cooking energies 下载免费PDF全文
Y. Chen W. Du G. Shen S. Zhuo X. Zhu H. Shen Y. Huang S. Su N. Lin L. Pei X. Zheng J. Wu Y. Duan X. Wang W. Liu M. Wong S. Tao 《Indoor air》2017,27(1):169-178
Residential solid fuels are widely consumed in rural China, contributing to severe household air pollution for many products of incomplete combustion, such as polycyclic aromatic hydrocarbons (PAHs) and their polar derivatives. In this study, concentrations of nitrated and oxygenated PAH derivatives (nPAHs and oPAHs) for household and personal air were measured and analyzed for influencing factors like smoking and cooking energy type. Concentrations of nPAHs and oPAHs in kitchens were higher than those in living rooms and in outdoor air. Exposure levels measured by personal samplers were lower than levels in indoor air, but higher than outdoor air levels. With increasing molecular weight, individual compounds tended to be more commonly partitioned to particulate matter (PM); moreover, higher molecular weight nPAHs and oPAHs were preferentially found in finer particles, suggesting a potential for increased health risks. Smoking behavior raised the concentrations of nPAHs and oPAHs in personal air significantly. People who cooked food also had higher personal exposures. Cooking and smoking have a significant interaction effect on personal exposure. Concentrations in kitchens and personal exposure to nPAHs and oPAHs for households using wood and peat were significantly higher than for those using electricity and liquid petroleum gas (LPG). 相似文献