首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Effects of α‐ and β‐chitosan (CH), soybean oil (SO) and their emulsions (CH:SO = 2:3) as coating materials on selected internal quality and sensory properties of eggs were evaluated during 5 weeks storage at 25 °C. After 3 weeks of storage, α‐ and β‐CH‐coated eggs changed to B grade, while SO‐ and emulsion‐coated eggs preserved grade A quality. Weight loss of eggs coated with SO and CH:SO emulsions was <2.0% vs. 5.3–5.8% for noncoated and CH‐coated eggs after 5 weeks of storage. β‐CH (0.9%) maintained lower weight loss of eggs than α‐CH (1.2%) only at 1‐week storage. Albumen pH of eggs coated with SO and CH:SO emulsions decreased progressively throughout storage. Eggs coated with β‐CH:SO emulsion and SO were significantly glossier than noncoated eggs. Consumers indicated positive purchase intent (69.17–76.67%) for all coated eggs. Overall, α‐CH:SO and β‐CH:SO emulsions extended egg shelf life by at least 3 weeks during room temperature storage.  相似文献   

2.
Effects of soybean oil (SO) and chitosan-soybean oil (CH:SO = 40:60) emulsion as coating materials for preserving internal quality of eggs were evaluated during 7 and 15 weeks storage at 25 °C and 4 °C, respectively. Consumers (n = 150) assessed surface properties and purchase intent of freshly coated eggs. Noncoated eggs deteriorated from AA to B grade after 1 week while coated eggs retained A grade up to 5 weeks at 25 °C. Amongst coatings, CH:SO emulsion maintained a lower albumen pH while SO was better at reducing weight loss. Effect of refrigeration on albumen pH was minimal. Weight loss of coated eggs was <3% after 7 weeks at 25 °C. Emulsion capacity and emulsion viscosity were minimally affected by coating and refrigeration, and their trends were more correlated to the yolk index at 25 °C than at 4 °C. Only SO-coated eggs were not sensorially smoother than noncoated eggs; however, CH:SO emulsion-coated eggs had the least shell colour changes (ΔE, values at day 0 as a reference) during storage at 25 °C. All coated eggs had 85% positive purchase intent. SO and CH:SO emulsion coatings significantly extended egg shelf-life compared to that of noncoated eggs at room and refrigerated storage.  相似文献   

3.
Effects of chitosan, whey protein concentrate (WPC), mineral oil (MO) and/or soybean oil (SO) coating on egg quality were compared at 25 and 4 °C, respectively, during 5 and 20 weeks of storage. Storage time and temperature, and type of coating significantly affected Haugh unit, yolk index, weight loss, albumen pH and emulsifying capacity. Shelf life was extended 4 weeks by MO and SO and 2 weeks by chitosan and WPC longer than that observed for noncoated eggs at 25 °C. MO‐ and SO‐coated eggs maintained AA grade for 20 weeks at 4 °C. Weight loss of SO‐coated eggs was <1% after 5 weeks at 25 °C and after 20 weeks at 4 °C. Yolk index and emulsifying capacity were more correlated at 25 °C than at 4 °C. MO and SO were more effective coating materials, with SO providing a more cost‐effective coating for extending egg shelf life.  相似文献   

4.
Effects of mineral oil (MO), chitosan solution (CH) and their emulsions (MO:CH = 75:25, 50:50, and 25:75 ratios) as coating materials in preserving internal quality of eggs were evaluated during a 5‐weeks storage at 25 °C. Consumers (n = 109) evaluated surface properties and purchase intent of freshly coated eggs. As storage time increased, Haugh unit and yolk index values decreased whereas weight loss increased. Noncoated eggs rapidly changed from AA to B and C grades after 1 and 3 weeks, respectively. However, all emulsion‐coated eggs maintained their A‐grade quality for 4 weeks. Compared with noncoated eggs, all emulsion coatings reduced weight loss of eggs by at least seven times (0.88–1.03% vs. 7.14%). Only MO:CH = 25:75 emulsion‐coated eggs were not sensorially glossier than noncoated eggs. All emulsion‐coated eggs had >80% positive purchase intent and were negative for Salmonella. This study demonstrated that MO:CH emulsion coatings preserved internal quality and prolonged shelf life of eggs.  相似文献   

5.
Effects of mineral oil (MO) and mineral oil–chitosan emulsion (MO:CH = 25:75) as coatings on internal quality and shelf‐life of eggs were evaluated during 5‐week storage at 25 °C. Eggs with three different initial albumen qualities [Haugh unit (HU): H = 87.8, M = 75.6 and L = 70.9] were evaluated. As storage time increased, HU and yolk index values decreased whereas weight loss increased. Coating with MO and/or 25:75 MO:CH emulsion could preserve the internal quality for at least 4 more weeks for H‐eggs and at least 3 more weeks for M and/or L‐eggs, all with weight losses <0.92%. All coated eggs had >70% positive purchase intent, and their colour differences at week 0 could not be detected by naked human eye (ΔE* < 3.0, noncoated eggs as reference). Consumers significantly differentiated freshly MO‐coated from noncoated eggs on overall surface appearance. This study demonstrated that MO and 25:75 MO:CH emulsion coatings could preserve internal quality and prolong shelf‐life of eggs.  相似文献   

6.
Effects of mineral oil (MO) and 4 emulsions (prepared with different emulsifier types) of MO and chitosan solution (CH) at a fixed ratio of MO:CH = 25:75 as coating materials in preserving the internal quality of eggs were evaluated during 5 wk at 25 °C and 20 wk at 4 °C. Generally, as storage time increased, Haugh unit and yolk index values decreased whereas weight loss increased. However, MO and/or 4 emulsion coatings minimized the weight loss (<1.5%) and preserved the albumen and yolk quality of eggs (with the final B grade) for at least 3 wk longer than those observed for noncoated eggs at 25 °C. At 4 °C, all coated eggs changed from AA to A grade after 5 wk and they maintained this grade for 10 wk (5 wk longer than that of noncoated eggs). Although refrigeration (4 °C) alone could maintain the B grade of noncoated eggs for up to 20 wk, coating treatments were necessary to keep the weight loss below 2%. Compared with 4 °C, the increasing weight loss showed stronger negative correlation (P < 0.01) with the decreasing Haugh unit (-0.46 to -0.89) and yolk index (-0.36 to -0.89) at 25 °C. The emulsifier type used in this study generally did not affect the internal quality of eggs. Salmonella spp. detection was negative for all coated and noncoated eggs. This study demonstrated that MO and MO:CH emulsion coatings preserved the internal quality, prolonged the shelf-life, and minimized weight loss (<2%) of eggs.  相似文献   

7.
Effects of storage of chitosan (CH) solution on physico-functional properties and consumer perception of CH-coated eggs were evaluated during 5- and 15-weeks storage at 25 °C and 4 °C, respectively. Seven treatments [CH0 (freshly-prepared), CH1 (stored for 1-week at 25 °C), CH1R (1-week, 4 °C), CH3 (3-weeks, 25 °C), CH3R (3-weeks, 4 °C), CH5 (5-weeks, 25 °C), CH5R (5-weeks, 4 °C)] were applied on eggshell. After 5-weeks storage, CH-solution viscosity decreased by 2.56 and 4.6 times, respectively, at 4 °C and 25 °C while pH slightly increased. CH0 preserved grade-A quality for 4-weeks vs. 1-week for noncoated eggs at 25 °C. After 5-weeks, weight loss (%) of coated eggs at 25 °C (6.04–5.59) was lower than that of noncoated eggs (7.44) but higher than that of all eggs at 4 °C (2.93–2.46). Albumen pH increased while emulsion capacity decreased with increased storage time; however, both were insignificantly affected by CH viscosity. Consumers perceived CH0- and CH1R-eggshell to be glossier than noncoated eggs after 5-weeks. Purchase intent was higher for CH-coated eggs (72–77.3%) than for noncoated eggs (61.3%). Overall, viscosity changes of CH-coating solution had lesser impact on quality of CH-coated eggs than did storage temperature/time of eggs.  相似文献   

8.
Effects of mineral oil:chitosan (MO:CH at 25:75) emulsions prepared with four different emulsifiers (2 water- and 2 oil-miscible) as coatings on the internal quality (weight loss, Haugh unit, yolk index, and albumen pH) of coated eggs were evaluated during 5 weeks at 25 ± 2 °C and 20 weeks at 4 ± 2 °C. Eggs with two initial albumen qualities [Haugh unit (HU): H = 87.8 and L = 70.9] were used. At 25 ± 2 °C, Haugh unit, yolk index, and albumen pH of all coated eggs decreased with increased storage time. Coated H- and L-eggs maintained an A-grade up to 4 weeks and 1 week, respectively. Weight loss of all coated eggs remained below 1.35% after 5 weeks of storage at 25 ± 2 °C. All coated eggs maintained an A-grade with less than 2.5% weight loss during 20 weeks of storage at 4 ± 2 °C. Emulsifier types marginally affected the internal quality of coated eggs regardless of storage temperatures.  相似文献   

9.
The selected internal qualities (weight loss, Haugh unit, yolk index, and albumen pH) of noncoated and mineral oil‐coated chicken eggs during 15 weeks of storage at 4 °C and/or during 5 weeks of storage at 25 °C were evaluated. Results indicated that, without refrigeration, the noncoated and mineral oil‐coated eggs rapidly changed from AA to C and B grades as measured by Haugh unit, respectively, after 5 weeks of storage. However, the AA quality of the noncoated eggs could be maintained under refrigerated storage (4 °C) for at least 5 weeks. The mineral oil coating and refrigerated storage (4 °C) synergistically minimised weight loss and preserved the albumen and yolk qualities of chicken eggs during a long‐term storage. At 4 °C, the mineral oil‐coated eggs preserved the initial AA grade for at least 15 weeks with l.19% weight loss.  相似文献   

10.
Aroma profile and organoleptic quality of CMC‐ and guar gum‐based silver nanoparticle‐coated kinnow (Citrus reticulata cv. Blanco) was evaluated for 120 days at 4 °C and 10 °C, 85–95% relative humidity. Loss in three major aroma‐active volatile compounds (limonene, linalool and γ‐terpinene) was determined after every 15 days by GC‐MS. Sensory quality of coated and uncoated fruit stored at 10 °C was declined during storage. Twenty five volatile aroma compounds were identified in fresh kinnow juice. Guar gum‐Ag coatings and 4 °C storage has significantly reduced losses of limonene, linalool and γ‐terpinene contents from 91 to 23%, 99 to 10% and 97 to 29% respectively as compared to uncoated fruit stored at 10 °C. Study suggests that CMC‐ and guar gum‐based silver nanoparticle‐coated kinnow stored at 4 °C has preserved the fruit aroma and sensory quality for 120 days.  相似文献   

11.
Four (coconut, palm, rice bran, and soybean) edible oils and glycerol were applied on eggshell. All noncoated and coated eggs were stored for 5 wk at 25 ± 2 °C and drawn weekly for quality evaluation. All oil coatings were more effective in preserving internal quality of eggs than was glycerol coating. As storage time increased, the preservative effects of edible oil coating on weight loss, and albumen and yolk quality were significantly noticed. Oil‐coated eggs had significantly lower weight loss (<0.43%) than did noncoated (3.87%) and glycerol‐coated (3.73%) eggs after 5 wk of storage. Based on the Haugh unit, oil‐coated eggs maintained AA grade up to 3 wk. After 5 wk of storage, noncoated, glycerol‐coated, and oil‐coated eggs changed from AA grade to below B, below B and A grade, respectively. The albumen pH of noncoated and glycerol‐coated eggs considerably increased from 8.23 to 9.51 and 9.42, respectively, while those of oil‐coated eggs either maintained or slightly increased to 8.32. The albumen viscosity of all eggs decreased with increased storage time. Consumers (N = 120) could differentiate surface glossiness of oil‐coated eggs from uncoated eggs (R‐index of 81.42% to 86.99%). All oil‐coated eggs were acceptable for surface glossiness (liking scores of 6.22 to 6.77) and surface odor (liking scores of 6.20 to 6.55) with overall liking scores of 6.34 to 7.03. Overall, this study demonstrated that edible oil (coconut, palm, rice bran, and soybean) coating could preserve internal quality of eggs (maintaining grade A) at least 4 wk longer than noncoated eggs. Practical Application: Freshness is a major contribution to the egg quality. The internal quality of eggs begins to deteriorate after they have been laid due to loss of moisture and carbon dioxide via the eggshell pores. Refrigeration is very effective in preserving egg quality. Surface coating is an alternative method to preserve egg quality, although it is much less effective than refrigeration. This study demonstrated that coconut, rice bran, soybean, and palm oils, which are abundant and commonly consumed in many parts of the world, could preserve the internal quality and reduce weight loss of oil‐coated eggs during room temperature storage.  相似文献   

12.
Fresh eggs from hens fed diets supplemented with 4% linseed oil (LO) or sunflower oil (SO) were either directly submitted to pasteurisation, hard‐boiling or scrambling processing, or first submitted to refrigerated storage at 4 °C for 60 day and then to processing. Fresh LO eggs showed higher (P ≤ 0.05) proportions of monounsaturated fatty acids (MUFAs) and n‐3 polyunsaturated fatty acids (PUFAs), but lower (P ≤ 0.05) proportions of saturated fatty acids (SFAs), PUFAs and n‐6 PUFAs than the SO eggs. Storage decreased (P ≤ 0.05) the proportion of PUFAs and increased (P ≤ 0.05) that of MUFAs in egg yolks from both treatments. The pasteurisation process had no effect on the fatty acid composition of fresh eggs from both treatments, but increased (P ≤ 0.05) n‐6 PUFAs and decreased (P ≤ 0.05) n‐3 PUFAs in stored LO eggs. Hard‐boiling and scrambling modified the fatty acid composition of fresh and stored eggs from both treatments by decreasing (P ≤ 0.05) the proportion of PUFAs, particularly of the very long‐chain n‐3 eicosapentaenoic, docosapentaenoic and docosahexaenoic PUFAs. LO eggs showed a higher susceptibility to fatty acid modification upon processing as compared to the SO eggs.  相似文献   

13.
There has been a growing interest in the use of natural materials as a delivery mechanism for antimicrobials and coatings in foods. The aim of the present study was to evaluate the effectiveness of pullulan coatings to improve internal quality and shelf‐life of fresh eggs during 10 wk of storage at 25 and 4 °C. Three treatments of eggs were evaluated as follows; non‐coated (control; C), coated with pullulan (P), and coated with pullulan containing nisin (N). The effects of the pullulan coatings on microbiological qualities, physical properties, and freshness parameters were investigated and compared with non‐coated eggs. For non‐coated eggs, as storage time increased, yolk index, albumen index, and Haugh unit value decreased and weight loss increased. However, pullulan coatings (P or N) minimized weight loss (<1.5%) and preserved the albumen and yolk quality of eggs (with a final B grade) 3 wk longer than non‐coated eggs at 25 °C. At 4 °C, both P‐ and N‐coated eggs went from AA to A grade after 9 wk and maintained the grade for 10 wk (4 wk longer than that of non‐coated eggs). This study is the first to demonstrate that pullulan coatings can preserve the internal quality, prolong the shelf‐life, and minimize weight loss of fresh eggs.  相似文献   

14.
Nutritional deficiencies of ergocalciferol (VD2) and cholecalciferol (VD3) cause skeletal deformations. The primary aim of this study was to encapsulate VD2 and VD3 in food‐grade oil‐in‐water (O/W) emulsions by using microchannel emulsification (MCE). Silicon asymmetric straight‐through microchannel (MC) array consisting of 10 313 channels, each having an 11 × 104 μm microslot connected to a 10 μm circular microholes. 1% (w/w) sodium cholate or Tween 20 in water was used as the continuous phase, while 0.5% (w/w) of each VD2 and VD3 in different oils served as the dispersed phase. Monodisperse O/W emulsions with Sauter mean diameters of 28 to 32 μm and relative span factor widths below 0.3 were formulated via an asymmetric straight‐through MC array under appropriate operating conditions. The monodisperse O/W emulsions stabilised with Tween 20 remained stable for >30 days with encapsulation efficiencies (EEs) of VD2 and VD3 of above 70% at 4 and 25 °C. In contrast, those stabilised with sodium cholate had stability of >30 days with their EEs of over 70% only at 25 °C.  相似文献   

15.
Nanoemulsions containing lemongrass oil (LO) were developed for coating plums and the effects of the nanoemulsion coatings on the microbial safety and physicochemical storage qualities of plums during storage at 4 and 25 °C were investigated. The emulsions used for coating were produced by mixing a carnauba wax‐based solution (18%, w/w) with LO at various concentrations (0.5% to 4.0%, w/w) using dynamic high pressure processing at 172 MPa. The coatings were evaluated for their ability to inhibit the growth of Salmonella Typhimurium and Escherichia coli O157:H7 and their ability to preserve various physicochemical qualities of plums. Uniform and continuous coatings on plums, formed with stable emulsions, initially inhibited S. Typhimurium and E. coli O157:H7 by 0.2 to 2.8 and 0.8 to 2.7 log CFU/g, respectively, depending on the concentration of LO and the sequence of coating. The coatings did not significantly alter the flavor, fracturability, or glossiness of the plums. The antimicrobial effects of the coatings against S. Typhimurium and E. coli O157:H7 were demonstrated during storage at 4 and 25 °C. The coatings reduced weight loss and ethylene production by approximately 2 to 3 and 1.4 to 4.0 fold, respectively, and also retarded the changes in lightness and the concentration of phenolic compounds in plums during storage. The firmness of coated plums was generally higher than uncoated plums when stored at 4 °C and plum respiration rates were reduced during storage. Coatings containing nanoemulsions of LO have the potential to inhibit Salmonella and E. coli O157:H7 contamination of plums and may extend plum shelf life.  相似文献   

16.
Selected internal quality and shelf life of eggs coated with oils from differences sources (mineral oil, canola oil, corn oil, grape seed oil, olive oil, soybean oil, and sunflower oil) were evaluated during 5 wk of storage at 25 °C. As the storage time increased, weight loss increased whereas Haugh unit and yolk index values decreased. Throughout the 5 wk of storage, eggs coated with oils, regardless of oil sources, possessed better albumen and yolk quality than the control noncoated eggs. Oil coating minimized weight loss of eggs (<0.8%) compared with that (7.26%) of the noncoated eggs after 5 wk of storage at 25 °C. No significant differences in internal quality (weight loss, Haugh unit, yolk index, and albumen pH) were generally observed among oil-coated eggs during 5 wk of storage. Based on the Haugh unit, the grade of noncoated eggs changed from AA at 0 wk to A at 1 wk and to B after 3 wk whereas that of oil-coated eggs from AA at 0 wk to A at 4 wk and maintained A grade until 5 wk. This study demonstrated that oil coating, irrespective of oil sources, preserved the internal quality, minimized weight loss (<0.8%), and extended the shelf life of eggs by at least 3 wk longer than observed for the noncoated eggs at 25 °C storage. Soybean oil was a more practical option as a coating material for eggs due to its low cost. PRACTICAL APPLICATION: Eggs are highly perishable and susceptible to internal quality deterioration when stored above 7 °C. Refrigeration of eggs may be seldom practiced in some developing regions of the world. Therefore, an alternative method, that is inexpensive yet effective, to preserve the internal quality of eggs and to prevent microbial contamination is needed. Oil coating has been proven to preserve the internal quality, prolong shelf life, and minimize weight loss of eggs. This study demonstrated that, compared with other vegetable oils, soybean oil was a more practical option as a coating material for eggs during 5 wk of storage at 25 °C due to its low cost.  相似文献   

17.
This study was aimed at evaluating the effect of coatings with alginate (AL), pectin (PE), carboxymethyl cellulose (CMC) or chitosan (CH) on microbial stability, physicochemical attributes, total phenolics and carotenoids content, antioxidant capacity and sensory properties of fresh‐cut mango during 14 days at 4 ± 1 °C. Coated fresh‐cut mango kept microbial counts below 6 logs CFU g?1, being CH‐coated fresh‐cut mango those that exhibited the lowest microbial counts (1 log CFU g?1) along entire storage. AL, PE and CMC coatings maintained yellow colour of fresh‐cut mango throughout storage. AL and CH coatings, which have different monomers in their chain, improved the content of antioxidant compounds in fresh‐cut mango as related to uncoated. AL‐coated fresh‐cut mangoes were the toughest, among those coated, during 14 days. The highest consumer acceptance was achieved in AL (90.2%) coated fresh‐cut mango. CH would be the most suitable coating to extend the quality of fresh‐cut mango throughout storage.  相似文献   

18.
ABSTRACT:  Selected quality and shelf life of eggs coated with mineral oil having 6 different viscosities (7, 11, 14, 18, 22, and 26 cP) were evaluated during 5 wk of storage at 25 °C. As the storage time increased, weight loss and albumen pH increased whereas Haugh unit and yolk index values decreased. After 5 wk of storage, eggs coated with 11, 14, 18, 22, or 26 cP oil possessed better quality than the control noncoated eggs and eggs coated with 7 cP oil. Oil coating, irrespective of viscosities, did not improve the emulsion capacity. There was an observable trend that coating with 26 cP oil was more effective in preventing weight loss and in maintaining the Haugh unit of eggs compared with coating with other viscosities of mineral oil. Based on the Haugh unit, the grade of noncoated eggs changed from "AA" at 0 wk to "C" after 3 wk whereas that of 26 cP oil-coated eggs from "AA" at 0 wk to "A" at 3 wk and "B" at 5 wk of storage. Coating with 26 cP oil reduced the weight loss of eggs by more than 10 times (0.85% compared with 8.78%) and extended the shelf life of eggs by at least 3 more weeks compared with the noncoated eggs.  相似文献   

19.
Based on the results of low field nuclear magnetic resonance (LF‐NMR) in our current study (the frozen state of ?6, ?9 and ?12 °C were nearly the same with extremely low free water content), ?6, ?9 and ?12 °C was designated as sub‐freezing temperatures. The effects of sub‐freezing storage compared with conventional chilling (4 °C), superchilling (?1 °C) and conventional freezing (?18 °C) on the quality and shelf life of beef were analysed. Results showed that the shelf life of beef is extended to 84 and 126 day at ?6 °C and ?9 °C, respectively. However, the TVB‐N values of the samples stored at ?12 °C and ?18 °C remained below 15 mg/100 g even on 168 day. Furthermore, shear force, colour, pH, thiobarbituric acid reactive substances (TBARS) and sensory properties were also measured. Consequently, the sub‐freezing storage has significantly extended the shelf life of beef compared to chilling and superchilling (< 0.05). Moreover, no significant difference (> 0.05) was found between the indicators for quality and shelf life of samples stored at ?12 and ?18 °C throughout 168 days.  相似文献   

20.
This study compared biofilm formation by 7 serogroups of pathogenic Escherichia coli and 2 or 3 phenotypes of Salmonella (susceptible, multidrug‐resistant [MDR], and/or multidrug resistant with ampC gene [MDR‐AmpC]). One‐week mature biofilms were also exposed to water, quaternary ammonium compound‐based (QAC), and acid‐based (AB) sanitizers. Seven groups (strain mixture) of above‐mentioned pathogens were separately spot‐inoculated onto stainless steel coupons surfaces for target inoculation of 2 log CFU/cm2, then stored statically, partially submerged in 10% nonsterilized meat homogenate at 4, 15, and 25 °C. Biofilm cells were enumerated on days 0, 1, 4, and 7 following submersion in 30 mL for 1 min in water, QAC, and AB. Counts on inoculation day ranged from 1.6 ± 0.4 to 2.4 ± 0.6 log CFU/cm2 and changed to 1.2 ± 0.8 to 1.9 ± 0.8 on day 7 at 4 °C with no appreciable difference among the 7 pathogen groups. After treatment with QAC and AB on day 7, counts were reduced (P < 0.05) to less than 0.7 ± 0.6 and 1.2 ± 0.5, respectively, with similar trends among pathogens. Biofilm formation at higher temperatures was more enhanced; E. coli O157:H7, as an example, increased (P < 0.05) from 1.4 ± 0.6 and 2.0 ± 0.3 on day 0 to 4.8 ± 0.6 and 6.5 ± 0.2 on day 7 at 15 and 25 °C, respectively. As compared to 4 °C, after sanitation, more survivors were observed for 15 and 25 °C treatments with no appreciable differences among pathogens. Overall, we observed similar patterns of growth and susceptibility to QAC and AB sanitizers of the 7 tested pathogen groups with enhanced biofilm formation capability and higher numbers of treatment survivors at higher temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号