首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salmorejo is a traditional tomato‐based creamy product. Because salmorejo is not heat‐processed, there is a risk of contamination with foodborne pathogens from raw materials. Even though bacterial growth in salmorejo is strongly inhibited because of its acidic pH (close to 3.9), the growth and survival of 3 foodborne pathogens in this food has not been studied before. In this study, 3 cocktails consisting of Escherichia coli O157, Salmonella enterica serovar Enteritidis, and Listeria monocytogenes strains were inoculated in freshly prepared salmorejo. The food was treated by high hydrostatic pressure (HHP) at 400, 500, or 600 MPa for 8 min, or left untreated, and stored at 4 °C for 30 d. Viable cell counts were determined on selective media and also by the triple‐layer agar method in order to detect sublethally injured cells. In control samples, L. monocytogenes viable cells decreased by 2.4 log cycles at day 7 and were undetectable by day 15. S. enterica cells decreased by 0.5 or 2.4 log cycles at days 7 and 15 respectively, but still were detectable at day 30. E. coli O157 cells survived much better in salmorejo, decreasing only by 1.5 log cycles at day 30. Treatments at pressures of 400 MPa or higher reduced viable counts of L. monocytogenes and S. enterica to undetectable levels. HHP treatments significantly (P < 0.05) reduced E. coli counts by approximately 5.2 to 5.4 log cycles, but also yielded surviving cells that apparently were sublethally injured. Only samples treated at 600 MPA for 8 min were devoid of detectable E. coli cells during storage.  相似文献   

2.
Salmonella enterica, Staphylococcus aureus, Escherichia coli O157: H7, and Listeria monocytogenes may contaminate similar types of food and cause foodborne disease. The objective of this study was to develop a selective enrichment broth for simultaneous enrichment of Salmonella enterica, Staphylococcus aureus, Escherichia coli O157: H7, and Listeria monocytogenes (SSEL) using nalidixic acid, acriflavine, lithium chloride, and sodium cholate as selective agents. Developed SSEL broth not only enriched the target pathogens to 5 log10 CFU/ml after 18 hr incubation at 37°C with 10–100 CFU/mL of inoculation concentration, but also could successfully support the simultaneous enrichment of target pathogens with similar growth rates and inhibit the growth of most nontarget bacteria effectively. The enrichment effect of SSEL was confirmed by artificial contamination test coupled with multiplex PCR. In summary, SSEL has been shown to be a promising multiplex selective enrichment broth for the detection of the four pathogens on a single-assay platform.  相似文献   

3.
The combined inactivation effects of high hydrostatic pressure (HHP) and antimicrobial compounds (potassium sorbate and ε‐polylysine [ε‐PL]) on 4 different bacterial strains present in skim milk and the effect of these treatments on milk quality were investigated in this study. HHP treatment at 500 MPa for 5 min reduced the populations of Escherichia coli, Salmonella enterica Typhimurium, Listeria monocytogenes, and Staphylococcus aureus from 6.5 log colony‐forming units (CFUs) or higher to less than 1 log CFU/mL. Compared to HHP alone, HHP with potassium or ε‐PL resulted in significantly higher reductions in the bacterial counts. After 5 min of treatment with HHP (500 MPa) and ε‐PL (2 mg/mL), no growth of E. coli, S. enterica Typhimurium, or L. monocytogenes in skim milk was observed during 15 d of refrigerated storage (4 ± 1 °C). Scanning electron microscopy analysis revealed that the synergistic treatments caused more serious damage to the bacterial cell walls. Quality assessments of the treated samples indicated that the combined treatments did not influence the color, the turbidity, the concentrations of –SH group of the proteins, or the in vitro digestion patterns of the milk. This study demonstrates that HHP with potassium or ε‐PL may be useful in the processing of milk or milk‐containing foods.  相似文献   

4.
There is a variety of different food processing methods, which can be used to prepare ready‐to‐eat foods. However, the need to preserve the freshness and nutritional qualities leads to the application of mild technologies which may be insufficient to inactivate microbial pathogens. In this work, fresh chicory stems were packed under a vacuum in films, which were transparent to microwaves. These were then exposed to microwaves for different periods of time. The application of sous vide microwave cooking (SV‐MW, 900 W, 2450 MHz), controlled naturally occurring mesophilic aerobic bacteria, yeasts and molds for up to 30 d when vacuum‐packed vegetables were stored at 4 °C. In addition, the process lethality of the SV‐MW 90 s cooking was experimentally validated. This treatment led to 6.07 ± 0.7 and 4.92 ± 0.65 log cfu/g reduction of Escherichia coli and Listeria monocytogenes inoculated over the chicory stems (100 g), respectively. With an initial load of 9 log cfu/g for both pathogens, less than 10 cfu/g of surviving cells were found after 90 s cooking. This shows that short‐time microwave cooking can be used to effectively pasteurize vacuum‐packed chicory stems, achieving >5 log cfu/g reduction of E. coli and L. monocytogenes.  相似文献   

5.
Three brands of commercial roast beef were purchased and artificially inoculated with a 5‐strain Listeria monocytogenes cocktail at 2 inoculation levels (approximately 3 and 6 Log CFU/g). Although all 3 brands contained sodium diacetate and sodium lactate, inoculated Listeria cocktail survived for 16 d in all 3 brands; significant increases in L. monocytogenes numbers were seen on inoculated Brand B roast beef on days 12 and 16. Numbers of L. monocytogenes increased to 4.14 Log CFU/g for the 3 Log CFU/g inoculation level and increased to 7.99 Log CFU/g for the 6 Log CFU/g inoculation level by day 16, with the pH values being 5.4 and 5.8 respectively. To measure the cell viability in potential biofilms formed, an Alamar blue assay was conducted. Brand B meat homogenate had the highest metabolic activities (P < 0.05). By comparing its metabolic activities to Brands A and C and the inoculated autoclaved meat homogenates, results indicated that the microflora present in Brand B may be the reason for high metabolic activities. Based on the denaturing gradient gel electrophoresis and the Shannon–Wiener diversity index analysis, the “Brand” factor significantly impacted the diversity index (P = 0.012) and Brand B had the highest microflora diversity (Shannon index 1.636 ± 0.011). Based on this study, results showed that antimicrobials cannot completely inhibit the growth of L. monocytogenes in ready‐to‐eat roast beef. Native microflora (both diversity and abundance), together with product formula, pH, antimicrobial concentrations, and storage conditions may all impact the survival and growth of L. monocytogenes.  相似文献   

6.
A major concern of the cattle industry is cross-contamination of meat with pathogens. Cattle are exposed to fecal material, mud, and other contaminants which harbor pathogens that can be shed onto meat and meat processing equipment. Due to increased chances of meat contamination during processing, new antimicrobial formulations for carcass washing before hide removal needs to be identified and tested. Sodium dichloroisocyanurate (SDIC) has biocidal properties and belongs to the N-halamine group of compounds. Disk diffusion assays revealed, 1,000 ppm SDIC effectively reduced pathogen concentrations. SDIC was evaluated for its effects on pathogens in Tryptic Soy Broth and results revealed that 1,000 ppm SDIC had a strong correlation with time and treatment with no bacterial growth in log CFU ml−1 observed at the lowest detection level. Treatment of inoculated hides with 1,000 ppm SDIC for 5 min resulted in reduction of Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes at 1.97, 2.02, and 2.84 log CFU cm−2, respectively.  相似文献   

7.
Yunjung Kim  Minhee Kim  Kyung Bin Song 《LWT》2009,42(10):1654-1658
Effect of fumaric acid, chlorine dioxide (ClO2), and UV-C treatment was examined on the inactivation of microorganisms in alfalfa and clover sprouts. Clover sprouts were irradiated with UV-C light (1–10 kJ/m2), and the treatment decreased the population of total aerobic bacteria by 1.03–1.45 log CFU/g. Clover sprouts inoculated with pathogenic bacteria were treated with various concentration of fumaric acid, and 0.5 g/100 ml fumaric acid treatment was the most effective. In addition, the combined treatment of fumaric acid (0.5 g/100 ml)/UV-C (1 kJ/m2) reduced the populations of Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes inoculated on clover sprouts by 3.02, 2.88, and 2.35 log CFU/g. Alfalfa sprouts were treated with ClO2, fumaric acid, and the combination of fumaric acid/ClO2. The combined treatment was the most effective, and it reduced the total aerobic bacteria by 3.18 log CFU/g as well as the initial populations of E. coli O157:H7, S. typhimurium, and L. monocytogenes inoculated on alfalfa sprouts by 4.06, 3.57, and 3.69 log CFU/g. These results suggest that the combined treatment of fumaric acid with UV-C or ClO2 can be useful for improving the microbial safety of alfalfa and clover sprouts.  相似文献   

8.
This study evaluated growth of Listeria monocytogenes inoculated on cooked chicken meat with different marinades and survival of the pathogen as affected by microwave oven reheating. During aerobic storage at 7 °C, on days 0, 1, 2, 4, and 7, samples were reheated by microwave oven (1100 W) for 45 or 90 s and analyzed microbiologically. L. monocytogenes counts on nonmarinated (control) samples increased (P < 0.05) from 2.7 ± 0.1 (day‐0) to 6.9 ± 0.1 (day‐7) log CFU/g during storage. Initial (day‐0) pathogen counts of marinated samples were <0.5 log CFU/g lower than those of the control, irrespective of marinating treatment. At 7 d of storage, pathogen levels on samples marinated with tomato juice were not different (P ≥ 0.05; 6.9 ± 0.1 log CFU/g) from those of the control, whereas for samples treated with the remaining marinades, pathogen counts were 0.7 (soy sauce) to 2.0 (lemon juice) log CFU/g lower (P < 0.05) than those of the control. Microwave oven reheating reduced L. monocytogenes counts by 1.9 to 4.1 (45 s) and >2.4 to 5.0 (90 s) log CFU/g. With similar trends across different marinates, the high levels of L. monocytogenes survivors found after microwave reheating, especially after storage for more than 2 d, indicate that length of storage and reheating time need to be considered for safe consumption of leftover cooked chicken.  相似文献   

9.
The aim of this study was to determine the anti‐adherence properties of three probiotic lactobacillus strains (Lb. rhamnosus 0900, Lb. rhamnosus 0908 and Lb. casei 0919), and their mixture against pathogens: Escherichia coli ATCC 10536, Salmonella enterica serovar Typhimurium ATCC 14028 and Candida albicans ATCC 10231 using Caco‐2 human colon adenocarcinoma cells. All strains of lactobacilli and the probiotic mixture to the greatest extent inhibited adherence of S. Typhimurium, up to 91%. Lb. rhamnosus 0900 inhibited E. coli by 75.9%, and Lb. casei 0919 decreased adherence of C. albicans by 49%. All pathogens activated the adherence of the mixture of probiotic bacteria.  相似文献   

10.
Abstract: A dried tomato‐flavored probiotic cream cheese (P) containing Lactobacillus paracasei Lpc‐37 was developed for the purpose of this study. The same product, but without probiotic addition (C) was used as control. Lactococcus lactis subsp. lactis and Lactococcus lactis subsp. cremoris were used as lactic starter cultures. Chemical composition analyses and sensory tests were performed on days 1 and 7, respectively. Titratable acidity, pH value and L. paracasei population were determined every 7 d during the refrigerated storage (21 d) of the cream cheeses. The experiment and analyses were performed in triplicate, using standard methods. Probiotic population remained greater than 107 CFU/g throughout the storage period, thereby characterizing the product as potentially probiotic. Cream cheeses C and P did not differ on the sensory tests, both obtaining good overall acceptance by the consumers, of which 82.6% stated that they certainly or probably would buy the product. Practical Application: Lactobacillus paracasei Lpc‐37 is a probiotic bacterium and clinical studies have shown that this microorganism beneficially affects its host. In general, dried tomato‐flavored products and cream cheese are products with good acceptance by the consumers. Thus, regular consumption of the probiotic cream cheese developed in this study may have positive effects on health and well being of people if incorporated into their diet.  相似文献   

11.
ABSTRACT: The effectiveness of whey protein isolate (WPI) coatings incorporated with grape seed extract (GSE), nisin (N), malic acid (MA), and ethylenediamine tetraacetic acid (EDTA) and their combinations to inhibit the growth of Listeria monocytogenes, E. coli O157:H7, and Salmonella typhimurium were evaluated in a turkey frankfurter system through surface inoculation (approximately 106 CFU/g) of pathogens. The inoculated frankfurters were dipped into WPI film forming solutions both with and without the addition of antimicrobial agents (GSE, MA, or N and EDTA, or combinations). Samples were stored at 4 °C for 28 d. The L. monocytogenes population (5.5 log/g) decreased to 2.3 log/g after 28 d at 4 °C in the samples containing nisin (6000 IU/g) combined with GSE (0.5%) and MA (1.0%). The S. typhimurium population (6.0 log/g) was decreased to approximately 1 log cycles after 28 d at 4 °C in the samples coated with WPI containing a combination of N, MA, GSE, and EDTA. The E. coli O157:H7 population (6.15 log/g) was decreased by 4.6 log cycles after 28 d in samples containing WPI coating incorporated with N, MA, and EDTA. These findings demonstrated that the use of an edible film coating containing nisin, organic acids, and natural extracts is a promising means of controlling the growth and recontamination of L. monocytogenes, S. typhimurium, and E. coli O157:H7 in ready‐to‐eat poultry products.  相似文献   

12.
The fate of Listeria monocytogenes, Salmonella Typhimurium, or Escherichia coli O157:H7 were separately monitored both in and on teewurst, a traditional raw and spreadable sausage of Germanic origin. Multi-strain cocktails of each pathogen (ca. 5.0 log CFU/g) were used to separately inoculate teewurst that was subsequently stored at 1.5, 4, 10, and 21 °C. When inoculated into commercially-prepared batter just prior to stuffing, in general, the higher the storage temperature, the greater the lethality. Depending on the storage temperature, pathogen levels in the batter decreased by 2.3 to 3.4, ca. 3.8, and 2.2 to 3.6 log CFU/g for E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively, during storage for 30 days. When inoculated onto both the top and bottom faces of sliced commercially-prepared finished product, the results for all four temperatures showed a decrease of 0.9 to 1.4, 1.4 to 1.8, and 2.2 to 3.0 log CFU/g for E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively, over the course of 21 days. With the possible exceptions for salt and carbohydrate levels, chemical analyses of teewurst purchased from five commercial manufacturers revealed only subtle differences in proximate composition for this product type. Our data establish that teewurst does not provide a favourable environment for the survival of E. coli O157:H7, S. Typhimurium, or L. monocytogenes inoculated either into or onto the product.  相似文献   

13.
We studied the ability of Lactobacillus pentosus 39, a BLS (Bacteriocin-like substance)-producing strain, to control the growth of Aeromonas hydrophila ATCC 14715 and Listeria monocytogenes ATCC 19117 artificially added to fresh salmon fillets at refrigeration temperatures and under simulated cold-chain break conditions.At refrigeration temperatures, Lb. pentosus 39 protective culture and its putative bacteriocin significantly reduced A. hydrophila counts compared with the control (2.1 and 1.4 log CFU/g reductions, respectively). Similar behaviour was observed for L. monocytogenes (3.6 and 1.3 log CFU/g reductions, respectively).Under simulated cold-chain break conditions, an increase in temperature (30°C for 12h) produced an evident increase in the development of A. hydrophila, L. monocytogenes, but also of Lb. pentosus 39, with a consequent increase in BLS production. This condition resulted in a greater reduction of both pathogens compared with samples stored at 4°C throughout the experiment (2.8 log CFU/g reduction for A. hydrophila, 5.8 log CFU/g reduction for L. monocytogenes). In samples treated with the putative bacteriocin alone, a less marked decrease was observed.Our study demonstrates the capability of Lb. pentosus 39 to control the growth of psychrotrophic bacteria in an experimental seafood model system. A similar biopreservation technology could provide more prolonged shelf-life during storage of ready-to-eat seafood, ensuring safety, even under extreme conditions.  相似文献   

14.
ABSTRACT: Effects of alkaline electrolyzed water (AlEW), acidic electrolyzed water (AcEW), 100 ppm sodium hypochlorite (NaClO), deionized water (DIW), 1% citric acid (CA) alone, and combinations of AlEW with 1% CA (AlEW + CA), in reducing the populations of spoilage bacteria and foodborne pathogens on cabbage were investigated at various dipping times (3, 5, and 10 min) with different dipping temperatures (1, 20, 40, and 50 °C). Inhibitory effect of the selected optimal treatment against Listeria monocytogenes and Escherichia coli O157 : H7 on cabbage were also evaluated. Compared to the untreated control, AlEW treatment most effectively reduced the numbers of total bacteria, yeast, and mold, followed by AcEW and 100-ppm NaClO treatments. All treatments dip washed for 5 min significantly reduced the numbers of total bacteria, yeast, and mold on cabbage. With increasing dipping temperature from 1 to 50 °C, the reductions of total bacteria, yeast, and mold were significantly increased from 0.19 to 1.12 log CFU/g in the DIW wash treatment (P < 0.05). Combined 1% CA with AlEW treatment at 50 °C showed the reduction of around 3.98 and 3.45 log CFU/g on the total count, and yeast and mold, effective reduction of L. monocytogenes (3.99 log CFU/g), and E. coli O157 : H7 (4.19 log CFU/g) on cabbage. The results suggest that combining AlEW with CA could be a possible method to control foodborne pathogens and spoilage bacteria effectively on produce.  相似文献   

15.
The study evaluated the efficacy of integrated ultraviolet‐C light (UVC) and low‐dose gamma irradiation treatments to inactivate mixed strains of Escherichia coli O157:H7 and Salmonella enterica on inoculated whole grape tomatoes. A mixed bacterial cocktail composed of a 3 strain mixture of E. coli O157:H7 (C9490, E02128, and F00475) and a 3 serotype mixture of S. enterica (S. Montevideo G4639, S. Newport H1275, and S. Stanley H0558) was used based on their association with produce‐related outbreaks. Spot inoculation (50 to 100 μmL) on tomato surfaces was performed to achieve a population of appropriately 107–8 CFU/tomato. Inoculated tomatoes were subjected to UVC (253.7 nm) dose of 0.6 kJ/m2 followed by 4 different low doses of gamma irradiations (0.1 kGy, 0.25 kGy, 0.5 kGy, 0.75 kGy). The fate of background microflora (mesophilic aerobic) including mold and yeast counts were also determined during storage at 5 °C over 21 d. Integrated treatment significantly (P < 0.05) reduced the population of target pathogens. Results indicate about 3.4 ± 0.3 and 3.0 ± 0.1 log CFU reduction of E. coli O157:H7 and S. enterica, respectively, per tomato with UVC (0.6 kJ/m2) and 0.25 kGy irradiation. More than a 4 log and higher reduction (>5 log) per fruit was accomplished by combined UVC treatment with 0.5 kGy and 0.75 kGy irradiation, respectively, for all tested pathogens. Furthermore, the combined treatment significantly (P < 0.05) reduced the native microflora compared to the control during storage. The data suggest efficacious treatment strategy for produce indicating 5 or higher log reduction which is consistent with the recommendations of the Natl. Advisory Committee on Microbiological Criteria for Foods.  相似文献   

16.
The aim of this study was to determine the growth kinetics of Listeria monocytogenes, with and without cold‐adaption, on fresh‐cut cantaloupe under different storage temperatures. Fresh‐cut samples, spot inoculated with a 4‐strain cocktail of L. monocytogenes (~3.2 log CFU/g), were exposed to constant storage temperatures held at 10, 15, 20, 25, or 30 °C. All growth curves of L. monocytogenes were fitted to the Baranyi, modified Gompertz, and Huang models. Regardless of conditions under which cells grew, the time needed to reach 5 log CFU/g decreased with the elevated storage temperature. Experimental results showed that there were no significant differences (P > 0.05) in the maximum growth rate k (log CFU/g h?1) and lag phase duration λ (h) between the cultures of L. monocytogenes with or without previous cold‐adaption treatments. No distinct difference was observed in the growth pattern among 3 primary models at various storage temperatures. The growth curves of secondary modeling were fitted on an Arrhenius‐type model for describing the relationship between k and temperature of the L. monocytogenes on fresh‐cut cantaloupe from 10 to 30 °C. The root mean square error values of secondary models for non‐ and cold‐adapted cells were 0.018, 0.021, and 0.024, and 0.039, 0.026, and 0.017 at the modified Gompertz, Baranyi, and Huang model, respectively, indicating that these 3 models presented the good statistical fit. This study may provide valuable information to predict the growth of L. monocytogenes on fresh‐cut cantaloupes at different storage conditions.  相似文献   

17.
ABSTRACT: Listeria monocytogenes and Salmonella typhimurium are major bacterial pathogens associated with poultry products. Ally isothiocyanate (AITC), a natural antimicrobial compound, is reportedly effective against these pathogenic organisms. A device was designed for the controlled release of AITC with modified atmosphere packaging (MAP), and then evaluated for its ability to control the growth of L. monocytogenes and S. typhimurium on raw chicken breast during refrigerated storage. In order to obtain controlled release during the test period, a glass vial was filled with AITC and triglyceride. It was then sealed using high-density polyethylene film. The release of AITC was controlled by the concentration (mole fraction) of AITC in the triglyceride and by the AITC vapor permeability through the film. The fresh chicken samples were inoculated with one or the other of the pathogens at 104 CFU/g, and the packages (with and without AITC-controlled release device) were flushed with ambient air or 30% CO2/70% N2 before sealing, and then stored at 4 °C for up to 21 d. The maximum reduction in MAP plus AITC (compared to MAP alone) was 0.77 log CFU/g for L. monocytogenes and 1.3 log CFU/g for S. typhimurium. The color of the chicken breast meat was affected by the concentration of AITC. Overall, a release rate of 0.6 μg/h of AITC was found to not affect the color, whereas at 1.2 μg/h of AITC the surface of the chicken was discolored.  相似文献   

18.
Red algae (RA) film containing grapefruit seed extract (GSE) was used as a wrapping film for cheese and bacon. RA film containing 1% GSE was prepared to inhibit the growth of pathogenic bacteria such as Escherichia coli O157:H7 and Listeria monocytogenes. Wrapping of cheese and bacon with the film decreased the populations of E. coli O157:H7 and L. monocytogenes. After 15 days of storage, wrapping of cheese with the RA film reduced the populations of E. coli O157:H7 and L. monocytogenes by 1.21 and 0.85 log CFU/g, respectively, compared to control. Bacon wrapped with the RA film also decreased the populations of E. coli O157:H7 and L. monocytogenes by 0.45 and 0.76 log CFU/g, respectively. Wrapping of bacon with the RA film decreased peroxide and thiobarbituric acid values. These results suggest that RA film containing GSE is a useful wrapping material for extending the shelf lives of cheese and bacon.  相似文献   

19.
Abstract: This study developed growth/no growth models for predicting growth boundaries of Listeria monocytogenes on ready‐to‐eat cured ham and uncured turkey breast slices as a function of lactic acid concentration (0% to 4%), dipping time (0 to 4 min), and storage temperature (4 to 10 °C). A 10‐strain composite of L. monocytogenes was inoculated (2 to 3 log CFU/cm2) on slices, followed by dipping into lactic acid and storage in vacuum packages for up to 30 d. Total bacterial (tryptic soy agar plus 0.6% yeast extract) and L. monocytogenes (PALCAM agar) populations were determined on day 0 and at the endpoint of storage. The combinations of parameters that allowed increases in cell counts of L. monocytogenes of at least l log CFU/cm2 were assigned the value of 1, while those limiting growth to <1 log CFU/cm2 were given the value of 0. The binary data were used in logistic regression analysis for development of models to predict boundaries between growth and no growth of the pathogen at desired probabilities. Indices of model performance and validation with limited available data indicated that the models developed had acceptable goodness of fit. Thus, the described procedures using bacterial growth data from studies with food products may be appropriate in developing growth/no growth models to predict growth and to select lactic acid concentrations and dipping times for control of L. monocytogenes. Practical Application: The models developed in this study may be useful in selecting lactic acid concentrations and dipping times to control growth of Listeria monocytogenes on cured ham and uncured turkey breast during product storage, and in determining probabilities of growth under selected conditions. The modeling procedures followed may also be used for application in model development for other products, conditions, or pathogens.  相似文献   

20.
This study evaluated the antilisterial activity of hops beta acids (HBA) and their impact on the quality and sensory attributes of ham. Commercially cured ham slices were inoculated with unstressed‐ and acid‐stress‐adapted (ASA)‐L. monocytogenes (2.2 to 2.5 log CFU/cm2), followed by no dipping (control), dipping in deionized (DI) water, or dipping in a 0.11% HBA solution. This was followed by vacuum or aerobic packaging and storage (7.2 °C, 35 or 20 d). Samples were taken periodically during storage to check for pH changes and analyze the microbial populations. Color measurements were obtained by dipping noninoculated ham slices in a 0.11% HBA solution, followed by vacuum packaging and storage (4.0 °C, 42 d). Sensory evaluations were performed on ham slices treated with 0.05% to 0.23% HBA solutions, followed by vacuum packaging and storage (4.0 °C, 30 d). HBA caused immediate reductions of 1.2 to 1.5 log CFU/cm2 (P < 0.05) in unstressed‐ and ASA‐L. monocytogenes populations on ham slices. During storage, the unstressed‐L. monocytogenes populations on HBA‐treated samples were 0.5 to 2.0 log CFU/cm2 lower (P < 0.05) than control samples and those dipped in DI water. The lag‐phase of the unstressed‐L. monocytogenes population was extended from 3.396 to 7.125 d (control) to 7.194 to 10.920 d in the HBA‐treated samples. However, the ASA‐L. monocytogenes population showed resistance to HBA because they had a higher growth rate than control samples and had similar growth variables to DI water‐treated samples during storage. Dipping in HBA solution did not adversely affect the color or sensory attributes of the ham slices stored in vacuum packages. These results are useful for helping ready‐to‐eat meat processors develop operational procedures for applying HBA on ham slices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号