首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
多年冻土区道碴结构铁路路基室内试验研究   总被引:1,自引:0,他引:1  
介绍了青藏高原多年冻土区道碴结构铁路路基的室内模型试验研究结果。分析了模型路基典型部位的温度随时间的变化情况及整个路基中典型断面在最低负温、最高正温和融化期结束时的温度场特征。通过对不同周期内对应时刻温度场的对比分析表明 :在路基表面 ,温度分布不对称 ;随着时间的推移 ,路基土体的温度有明显的降低 ,最大融化深度在逐渐减小 ,这说明在环境温度较低、路基高度较高的情况下 ,道碴路基结构是一种能维持路基下冻土稳定的路基结构形式 ,但在考虑全球升温及高温冻土条件下 ,还需要采取其它保护冻土措施  相似文献   

2.
邸建玄  杨希文 《山西建筑》2003,29(15):113-114
介绍了青藏铁路清水河冻土试验段工程概况、通风管路基的原理、适用范围及施工方法。指出通风管路基在青藏铁路多年冻土区推广采用,效果良好,在施工中操作简单,施工质量易控制。  相似文献   

3.
铁路路基的稳定性,是高原多年冻土地区铁路修筑技术研究的核心。土体温度在冻土强度、变形、冻土生消等方面影响多年冻土区铁路路基的稳定性。在评价多年冻土地区铁路路基的稳定性时,首先要评价其热稳定性,而且要评价路基基底或边坡多年冻土在修筑路基后的热稳定性。  相似文献   

4.
多年冻土区抛石护坡路基室内试验研究   总被引:5,自引:0,他引:5       下载免费PDF全文
多年冻土区道路病害主要是由路基下冻土温度升高融化下沉引起。由于阴阳坡差异引起路基不均匀沉降而导致的路面纵向裂缝病害严重影响了路基的稳定性。通过室内试验研究了在相同温度边界条件下普通路基和抛石护坡路基的温度分布特征,对比分析了两种路基结构的温度差异。结果表明:普通路基的阴阳坡两侧温度分布极不对称;铺设抛石护坡后,这种状况得到了很大改善,并且抛石护坡下土体温度明显降低;抛石护坡能够降低路基温度和调节路基阴阳坡的温度差异;抛石护坡是多年冻土区防治路基融沉和纵向裂缝病害的一种可行措施。  相似文献   

5.
肖述文 《山西建筑》2010,36(10):257-258
为研究草皮护坡在多年冻土区路基边坡工程中的应用效果,在青藏铁路沱沱河地区进行了草皮护坡结构的试验研究,研究结果表明,移植草皮护坡,在多年冻土区路基边坡工程中是比较好的防护措施,能够起到防护路基边坡的作用。  相似文献   

6.
多年冻土区铁路保温路基变形特征研究   总被引:5,自引:0,他引:5  
冻土具有极为特殊的工程地质性质,修建其上的路基将不可避免地发生变形,甚至是破坏。为保证道路畅通,冻土路基在满足热稳定性要求的同时,道路路基的变形也必须满足设计规范要求。基于青藏铁路北麓河保温路基的地温、变形监测资料,分析路基地温、变形特征及其相互关系。研究结果表明,冻土路基的变形和其下地温场状况密切相关,地温场状况及其变化控制和决定着冻土路基变形场的状况。多年冻土地温升高产生的冻土压缩变形是导致保温路基持续较大变形的主要原因之一,在冻土路基变形研究中不可忽略。而冻土融化产生的变形是冻土路基变形的主要因素。基于实际监测数据分析结果,考虑到温度对多年冻土地区土体力学性质的强烈决定作用,建立冻土路基热弹塑性融沉压缩本构模型,进行温度场和变形场的单向耦合分析。计算结果表明,当该地区年平均温度较低、在路基高度较小的情况下,铁路保温路基的变形较小。相反,在该地区年平均温度较高,路基高度也较大的情况下,冻土路基的变形较大,这也和监测结果相符合。  相似文献   

7.
石刚强 《山西建筑》2011,37(16):164-166
对多年冻土区路基病害主要影响因素进行了分析,归纳了冻土区路基工程病害分类,并从施工期预防性控制技术、潜在期控制技术、显现期整治技术三个方面提出了具体的防治措施,从而确保铁路运营安全。  相似文献   

8.
透壁通风管路堤降温效应的室内试验研究   总被引:7,自引:0,他引:7       下载免费PDF全文
介绍了研究透壁通风管路堤降温效果的室内试验方法,对100cm×60cm×100cm尺寸的不同通风管路堤试样进行了实验研究。结果表明,采用透壁通风管能明显增强路堤的降温效果,而只在负温期间通风的透壁通风管路堤降温效果更为显着,路堤在通风管进风口附近的温度变化幅度以及负温区域的范围都明显大于通风管出风口处,形成了路基温度场沿着风向的不对称分布。  相似文献   

9.
既有东北铁路牙林线、嫩林线多年冻土区路基病害严重,借鉴青藏铁路建设的成功经验,利用热棒、保温板及保温护道等综合防治措施进行了路基病害整治。针对牙林线北段试验工程,利用观测断面实测地温资料对试验段综合防治措施效果进行分析。分析表明:防治措施效果明显,有效控制了路基下伏多年冻土地温,冻土上限明显抬升,对保证铁路正常运营发挥了积极作用。  相似文献   

10.
为充分研究纵向通风路基对于多年冻土的工程效果,2003年在国道214线花石峡修建了纵向通风的实体试验工程.现场试验工程监测数据初步表明,相对于一般路基,A段(管长为10m)通风管下2m范围的土体,一年后地温整体上降低了1~1.5℃,B段(管长为15m)相应范围地温也降低了0.3~0.7℃,说明通风管的确起到了降低地温的良好作用,利用铺设在路基坡脚处的纵向通风管道加强退化行多年冻土区公路路基稳定性是可行的.  相似文献   

11.
为了考察粒径及铺设位置对多年冻土区碎石路基降温效果的影响,采用碎石、卵砾石和砂砾石三种材料在单一结构、复合结构和混合结构三种情况下,在尺寸为50 cm×50 cm×65 cm 的绝热箱体内进行了顶面气温周期性波动的一维传热试验。试验结果表明,碎石粒径为24 cm、46 cm、68 cm 和1015 cm 的单一结构碎石体中均可产生自然对流机制,其中以碎石粒径为46 cm 的碎石体降温效果最佳。采用不同粒径的混合结构或有上覆砂砾石和卵砾石层的复合结构都将削弱降温效果。碎石体的平均温度随碎石厚度增加而降低。为充分利用自然对流机制,多年冻土区应采用单一粒径为46 cm 的碎石铺设路基,不应采用不同粒径的混合结构。碎石层应铺设在路基顶面。  相似文献   

12.
通过瞬态温度场的导热微分方程,采用伽辽金法推导出温度场的三维有限元公式,建立了通风路基温度场的三维计算模型。对青藏铁路在年平均气温为-4.3℃,地表年平均温度为-1℃的路段应用通风路基,预测未来50年气温上升2.6℃的情况下,对路基的三维温度场进行了数值计算,并和普通填土路基温度场进行了对比分析,为设计、施工部门提供理论参考。  相似文献   

13.
通过变渗透率多孔介质流函数控制方程,分析了青藏公路碎石路堤冬季自然对流降温效应的发生和演化过程。结果表明:公路碎石路堤冬季自然对流降温效应从边坡区域最先开始形成,并随着冬季路面温度下降而逐渐向路堤中间区域发展。通过引入自然对流指数,分析了自然对流降温效应随路堤碎石层填筑厚度的变化规律,其可分为恒零区、急增区和缓变区3个阶段,急增区的起点和终点对应于路堤碎石层填筑的最小厚度和最大厚度。最后,利用自然对流指数具体计算了不同粒径碎石层填筑的临界厚度。  相似文献   

14.
为研究透壁式通风管–块石复合气冷路基的降温效果,针对年均气温-3.5℃,平均风速2.5 m/s,主导风向为西北方向的高原环境条件开展了室内模型试验,对比分析了单一块石路基和透壁式通风管–块石复合路基的孔隙空气对流速度、特征点地温及模型整体温度场变化过程。试验结果表明:在透壁式通风管的疏导作用下,通风管与块石层复合结构能够起到强化路基体对流的效果,复合路基块石孔隙中的空气流速比单一块石路基提高约20%,使得复合路基模型底部的降温幅度是单一块石路基模型的2.2倍。建立了透壁式通风管–块石复合路基数值计算模型,对通风管内空气流速分布、路基温度场变化进行了预测分析。结果表明:空气流速在通风管中心达到最大值4.06 m/s,在管壁处流速出现跃变陡降,在块石介质区域里速度的数量级为10-1,与室内试验的结果较为一致。模型试验和数值计算结果均表明复合路基能够起到储存冷量、降低下伏多年冻土地温的作用。  相似文献   

15.
碎石粒径对寒区路堤自然对流降温效应的影响   总被引:12,自引:5,他引:12       下载免费PDF全文
介绍了一种研究路堤碎石层自然对流效应的实验方法。对由碎石、卵砾石和砂砾石组成的6种试样进行了实验研究和理论分析,结果表明,在表面温度周期波动条件下,碎石层中能产生有利于寒区路基稳定的自然对流降温效应,利用平均Rayleigh数可确定碎石层自然对流的发生情况。在相同边界条件下,不同粒径的碎石层将产生不同的自然对流降温效应,其强度随粒径的增大而增大,并随表面温度周期波动而具有时间累加性。同时,确定何种粒径碎石的冬季降温效应为最佳还需要综合考虑其热传导性质。  相似文献   

16.
花石峡连续多年冻土区湿润性地段路基稳定性模拟分析   总被引:3,自引:0,他引:3  
根据214国道花石峡长石头山连续多年冻土湿润性地段的自然地理及地质水文条件,对该区在分别修建不同高度的沥青、水泥混凝土、砂砾路面后路基的稳定性进行模拟分析与试验路段的实测性对比。  相似文献   

17.
根据青藏高原东部地区高温多年冻土地段的自然地理及地质水文条件,利用部分试验路段的实测资料,对该区在分别修建不同高度的沥青、水泥混凝土、砂砾路面后路基的热稳定性进行了模拟分析,根据计算结果就不同路面类型在该区高温冻土地段的适用性进行了探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号