首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The shear behavior of a 6061 aluminum alloy was studied in the semisolid state at large solid fractions. The tests were carried out either at constant temperature after partial solidification (i.e., isothermal shear tests) or during solidification at low cooling rate (i.e., nonisothermal shear tests). In isothermal conditions, results show that (1) the mechanical behavior depends on the volume fraction of the solid phase present in the sample at the temperature of the test, (2) there is a critical solid fraction corresponding to the coalescence of the solid grains beyond which shear stress increases very sharply with increasing solid fraction, and (3) the mushy alloy exhibits viscoplastic behavior with a strain-rate-sensitivity parameter close to about 0.17. In nonisothermal conditions, results show that stress increases continuously with decreasing temperature whatever the strain rate. However, at high strain rate, it was observed that cracks developed when the solid fraction approaches 1, leading to a slower stress increase compared to that observed at low strain rate. Finally, modeling of this behavior is carried out by considering a cohesion parameter of the solid phase, which depends on solid fraction and strain rate.  相似文献   

2.
The tensile properties of a 6061 aluminum alloy have been studied in the semisolid state at large solid fractions. The tests have been carried out either after a partial melting treatment or after partial solidification. Results show the following: (1) the mechanical behavior depends on the liquid-phase distribution and, therefore, on the way the semisolid state has been achieved (melting or solidification); (2) there is a critical solid fraction range where the semisolid alloy is relatively brittle; and (3) the mushy alloy exhibits viscoplastic behavior with the occurrence of micro-superplasticity at low strain rate. Modeling of this behavior is carried out by considering either the area fraction of grain boundaries wetted by the liquid or a cohesion parameter of the solid phase, which depends on solid fraction and thermal treatment.  相似文献   

3.
The modern concepts of the causes of hot tearing are considered and the influence of the solid fraction growth rate of an alloy is studied. The hot-tearing susceptibility (HTS) of binary Al–(5–73) wt % Zn alloys is investigated using backbone tests. The HTS is found to be maximal at ~25 wt % Zn. This maximum cannot be explained by a change in the effective solidification range, since this range of the alloys decreases monotonically with increasing zinc content. The calculations of nonequilibrium solidification by the Scheil–Gulliver model and the solid fraction growth rate of the alloys under study demonstrate that the increase in the HTS induced by an increase in the zinc content from 5 to 25 wt % is related to the decrease in the solid fraction growth rate at the final stages of solidification. The decrease in the HTS at >25 wt % Zn is associated with an increase in the fraction of eutectic in the alloys (the solid fraction growth rate during the eutectic reaction tends toward infinity) and with a change in its morphology.  相似文献   

4.
Hot tearing is one of the most serious defects encountered in aluminum alloy castings. During solidification of aluminum alloys, the localized region of solidified alloys is submitted to thermally induced strains that can be lead to severe solidification defects, such as shrinkage porosity and hot tearing. The formation of hot tearing is related to the development of local stress or thermal strains. It is such a complicated phenomenon that a full understanding has not been achieved yet, though it has been extensively investigated for decades. Therefore, in order to further understand this complicated phenomenon and establish the mathematical models of hot tearing, it is necessary to obtain the accurate mechanical property data in the mushy zone of alloys. In response to the demand for this purpose, a newly experimental apparatus has been used to perform tensile measurements of aluminum alloys during solidification. Therefore, the tensile properties measurements of the mushy zone in A356 alloy have been carried out. The fracture surfaces and microstructures of the hot tearing samples have been examined by optical microscopy and scanning electron microscopy. The results show that the yield stresses are increasing with the increase of the solid fraction. When the solid fraction is close to one, they will keep stable to a certain value. According to the analysis, the yield stresses will change with the evolution of solid fraction, which is in accordance with the Boltzmann Function.  相似文献   

5.
6.
For thixoforming to be possible,the microstructure of the starting material must be non-dendritic,which can be obtained by the strain induced melt activation(SIMA)route.Based on the SIMA route,as-cast AZ91D alloy with the addition of yttrium was deformed by cyclic closed-die forging(CCDF).Microstructure evolution of CCDF formed AZ91D-RE alloy during partial remelting were investigated.Furthermore,the mechanical properties of thixoformed AZ91D-RE magnesium alloy components were also studied.The results showed that prolonged holding time resulted in grain coarsening and the improvement in degree of spheroidization.The coarsening behaviour of solid grains in the semi-solid state obeyed Ostwald ripening mechanism.The coarsening rate constant of CCDF formed AZ91D-RE during partial remelting was 324 um3/s at 550℃.The value of yield strength,ultimate tensile strength and elongation to fracture of four-pass CCDF formed AZ91D-RE magnesium alloy were 214.9,290.5 MPa and 14%,respectively.Then the four-pass CCDF formed alloys were used for thixoforming.After holding at 550℃ for 5 min,the values of yield strength,ultimate tensile strength and elongation to fracture of thixoformed component were 189.6 MPa,274.6 MPa and 12%,respectively.However,prolonged holding time led to remarkable decrease in mechanical properties of thixoformed components.  相似文献   

7.
Strength development in the mushy zone during solidification of three aluminum alloys (Al-4 wt pct Cu, Al-7 wt pct Si-1 wt pct Cu, and Al-7 wt pct Si-4 wt pct Cu) has been measured with two different techniques—horizontal tensile testing and direct shear cell testing. The strength results from the two methods correspond with one another to a much higher degree than suggested by the results presented in the literature. Tensile strength starts to develop at the maximum packing solid fraction, confirmed by the shear strength measurements. The maximum packing fraction represents the point where the internal network structure of the mushy zone is established and ligaments of the network must be broken to rearrange the dendrites. The data indicate a converging trend of the shear and tensile strength at high solid fractions, therefore indicating that the deformation mechanisms are also becoming similar. The results presented in this article suggest that it is possible to develop constitutive equations for the mechanical properties of the mushy zone over the entire solid fraction regime, i.e., from coherency to complete solidification. These equations could be used for the prediction of stress development as well as defect formation.  相似文献   

8.
Friction stir welding process is a promising solid state joining process with the potential to join low melting point materials, particularly aluminum alloys. The most attractive reason for this is the avoidance of solidification defects formed during conventional fusion welding processes. Tool rotational speed and the welding speed play a major role in deciding the weld quality. In the present work an effort has been made to study the effect of the tool rotational speed and welding speed on mechanical and metallurgical properties of friction stir welded joints of aluminum alloy AA6082-T651. The micro hardness profiles obtained on welded zone indicate uniform distribution of grains in the stir zone. The maximum tensile strength obtained is 263 MPa which is about 85% of that of base metal. Scanning electron microscope was used to show the fractured surfaces of tensile tested specimens.  相似文献   

9.
After the investigation on partial remelting of thixotropic magnesium serial alloys (ZK60) by near non-equilibrium liquidus casting (NNLC), the primary solid grains of ZK60-2Ca alloy spheroidized notably during partial remelting processing, however, coarsening and polygonization as occurred holding time prolonged. The refining and globularity of the thixotropic alloys are promoted after further alloyed by Y, RE, Nd and/or Ag, and the results vary with those addition. The remelting structure of ZK60-2Ca-1Y alloy is finer than its base alloy. And the effect of RE, especially Ag, on the refinement of microstrueture is notable, but Nd does nothing on it. There is little impact of remelting temperature fluctuation on partial remelted microstrueture as holding time in general. On the contrary, it is more sensitive at longer holding time. The quality thixotropic silver-contained alloy can be achieved by remelted partially at 600℃ for 10 min.  相似文献   

10.
Microstructural evolutions of type 304 stainless steel and the related mechanical property of flow stress in semi‐solid state are investigated. The evolutions of microstructure during solidification, partial remelting of a hot‐rolled billet and partial remelting of a cast billet are compared with respect to structural morphologies in the semi‐solid state. Various structural morphologies, such as the linear and multilayered liquid/austenite/δ‐ferrite structure, globular liquid/δ‐ferrite structure and dendrite structure, are characterized using optical micrographs and an EPMA (electron probe microanalyzer). The various structural morphologies in the semi‐solid state are influenced not only by the phase transformation but also by the previous treatment of type 304 steel, such as hot rolling and casting. Furthermore, a series of hot compression tests are conducted for various combinations of deformation rate and deformation temperature in the semi‐solid state, to measure the flow stress and the change in microstructure resulting from plastic deformation. Flow stress, phase segregation, microfracture and distortion of solid particles during and after the hot compression test are strongly affected by the structural morphology in the semi‐solid state, such as the dendrite structure, nonglobular structure and globular structure. Semi‐solid type 304 stainless steel with dendrite structure exhibits the highest flow stress, which is about three times that of steel with globular structure, although the testing temperature and deformation rate are controlled to be the same. This is a result of the higher bonding force between solid particles and lower fluidity of the liquid phase of the dendrite structure than those of the globular structure, which exhibits excellent fluidity of the liquid phase and rotation of solid particles.  相似文献   

11.
Tensile tests were conducted on the aluminum alloy, AA6111, after various artificial aging treatments in order to examine the influence of precipitation state on yield stress and work-hardening behavior. During artificial aging, significant changes in the work-hardening rate were observed as the precipitation reaction proceeded. A semiempirical model has been developed to interpret these changes in work-hardening rate. This model shows that the significant changes in work-hardening rate can be related to the manner in which flow stress contributions from different obstacles are summed and the transition from shearable to nonshearable precipitates. The present study presents a new approach to determining the shearable/nonshearable transition from a series of tensile tests. Results on the aluminum alloy AA7030 were also found to be consistent with the proposed theoretical framework. Finally, the proposed model allows the overall mechanical response for a variety of aging conditions to be rationalized.  相似文献   

12.
In this article, a single-phase, one-domain macroscopic model is developed for studying binary alloy solidification with moving equiaxed solid phase, along with the associated transport phenomena. In this model, issues such as thermosolutal convection, motion of solid phase relative to liquid and viscosity variations of the solid–liquid mixture with solid fraction in the mobile zone are taken into account. Using the model, the associated transport phenomena during solidification of Al-Cu alloys in a rectangular cavity are predicted. The results for temperature variation, segregation patterns, and eutectic fraction distribution are compared with data from in-house experiments. The model predictions compare well with the experimental results. To highlight the influence of solid phase movement on convection and final macrosegregation, the results of the current model are also compared with those obtained from the conventional solidification model with stationary solid phase. By including the independent movement of the solid phase into the fluid transport model, better predictions of macrosegregation, microstructure, and even shrinkage locations were obtained. Mechanical property prediction models based on microstructure will benefit from the improved accuracy of this model.  相似文献   

13.
Several aluminum alloys have been subjected to two stage tensile straining, an initial prestrain followed by a subsequent tensile strain at 90 deg to the initial direction. In AA1100-0 and AA3003-0 the prestrain produces dislocation tangling and diffuse cell walls resulting in an enhanced flow stress and decrease in ductility when the material, is subsequently strained in the orthogonal direction. In a fine grained experimental Al−Fe−Ni alloy the prestrain is accompanied by a very low accumulation of dislocations and in this case the flow stress is reduced and ductility enhanced in subsequent orthogonal straining. The commercial alloys AA2036-T4 and AA5182-0 are unaffected by the two stage tensile strain path. The results are considered in terms of the forming limit curve and it is also shown that the behavior is consistent with the concept of an “alien” dislocation distribution being generated during the prestrain.  相似文献   

14.
The present study is aimed to understand the influence of dynamic precipitation on the low cycle fatigue (LCF) behavior of an under-aged (UA) AA6063 Al–Mg–Si alloy. This was accomplished by the estimation of plastic strain energy density (PSED) at varied isolated cycles during LCF of the UA alloy with subsequent comparison of these results with those of peak-aged (PA) and over-aged (OA) ones. The LCF tests of the UA alloy were carried out in the range of strain amplitudes of 0.2–1.0 % together with the evolution of hardness and tensile properties. The UA alloy shows Masing behavior, evaluated in terms of the variation of Bauschinger strain with plastic strain amplitude, and exhibits continuous hardening till failure unlike the PA and OA alloys. Higher average PSED value for the UA alloy in comparison to that for the PA and the OA alloys indicates dynamic precipitation during cycling; the magnitudes of average PSED were calculated using a proposed method. In addition, pronounced increase in the post LCF hardness values substantiate the dynamic precipitation.  相似文献   

15.
Modeling of microsegregation in macrosegregation computations   总被引:3,自引:0,他引:3  
A general framework for the calculation of micro-macrosegregation during solidification of metallic alloys is presented. In particular, the problems of back diffusion in the primary solid phase, of eutectic precipitation at the end of solidification, and of remelting are being addressed for an open system,i.e., for a small-volume element whose overall solute content is not necessarily constant. Assuming that the variations of enthalpy and of solute content are known from the solution of the macroscopic continuity equations, a model is derived which allows for the calculation of the local solidification path (i.e., cooling curve, volume fraction of solid, and concentrations in the liquid and solid phases). This general framework encompasses four microsegregation models for the diffusion in the solid phase: (1) an approximate solution based upon an internal variable approach; (2) a modification of this based upon a power-law approximation of the solute profile; (3) an approach which approximates the solute profile in the primary phase by a cubic function; and (4) a numerical solution of the diffusion equation based upon a coordinate transformation. These methods are described and compared for several situations, including solidification/remelting of a closed/open volume element whose enthalpy and solute content histories are known functions of time. It is shown that the solidification path calculated with method 2 is more accurate than using method 1, and that 2 is a very good approximation in macrosegregation calculations. Furthermore, it is shown that method 3 is almost identical to that obtained with a numerical solution of the diffusion equation (method 4). Although the presented results pertain to a simple binary alloy, the framework is general and can be extended to multicomponent systems.  相似文献   

16.
The evolution of γ/γ′ eutectic during the solidification of Ni-base superalloys CMSX-10 and CMSX-4 was investigated over a wide range of cooling rates. The microsegregation behavior during solidification was also quantitatively examined to clarify the influence of elemental segregation on the evolution of γ/γ′ eutectic. In the cooling rate ranges investigated (0.9 to 138.4 K/min (0.9 to 138.4 °C/min)), the γ/γ′ eutectic fraction in CMSX-10 was found to be more than 2 times higher than that in CMSX-4 at a given cooling rate. However, the dependence of the γ/γ′ eutectic fraction on the cooling rate in both alloys showed a similar tendency; i.e., the γ/γ′ eutectic fraction increased with increasing the cooling rate and then exhibited a maximum plateau at and above the certain critical cooling rate in both alloys. This critical cooling rate was found to be dependent on the alloy composition and was estimated to be about 12 K/min (12 °C/min) and 25 K/min (25 °C/min) for CMSX-10 and CMSX-4, respectively. The calculated solid compositions based on the modified Scheil model revealed that even a small compositional difference of total γ′ forming elements in the initial composition of the alloy can play a significant role in the as-cast eutectic fraction during the solidification of Ni-base superalloys. The evolution of the γ/γ′ eutectic fraction with respect to the cooling rate could be rationalized by taking into account the effects of back-diffusion in solid and dendrite arm coarsening on decreasing the extent of microsegregation.  相似文献   

17.
A technique for measuring the linear contraction during and after solidification of low-alloy steel was developed and used for examination of two commercial low-carbon and low-alloy steel grades. The effects of several experimental parameters on the contraction were studied. The solidification contraction behavior was described using the concept of rigidity in a solidifying alloy, evolution of the solid fraction, and the microstructure development during solidification. A correlation between the linear contraction properties in the solidification range and the hot crack susceptibility was proposed and used for the estimation of hot cracking susceptibility for two studied alloys and verified with the real casting practice. The technique allows estimation of the contraction coefficient of commercial steels in a wide range of temperatures and could be helpful for computer simulation and process optimization during continuous casting.  相似文献   

18.
The flexibility of the wrought wire clasp is related to a number of factors, including the type and gauge of the alloy. The purpose of this study was to compare the bend behavior of five wrought wire alloys used in removable partial dentures. The alloys and their gauge diameters (in millimeters) were Ticonium (18, 19, 20), platinum-gold-palladium (18, 19), Wironium (18, 20), Jelenko Standard (18, 19, 20), and Denture Clasp (18, 19, 20). A total of 12 to 15 samples of each dental alloy were tested. Three-point bending was performed on a servohydraulic testing system controlled by a computer at 1.00 mm/sec until fracture or actuator contact occurred. Maximum stress and elastic modulus in bending were determined for each gauge diameter. Analysis of variance and post hoc Scheffe statistical analyses revealed significant maximum stress and elastic modulus in bending differences for different alloys of the same gauge and for different gauges of the same alloy. The choice of material and the gauge diameter significantly influenced the mechanical property of bending for wrought wire removable partial denture alloys. The Ticonium alloy had the greatest elastic modulus (stiffest) at all levels and the Denture Clasp and the Jelenko Standard alloys had the lowest elastic modulus (most flexible). These data indicate that knowledge of the bending properties of an alloy is equally as important as the gauge size when selecting a wire clasp.  相似文献   

19.
Two alloys of high-nitrogen stainless steel have been heat treated to produce dual-phase microstruc-tures. The first alloy, N10CrNiMol7 1, a Ni-containing stainless steel, was processed conventionally. The second alloy, N20CrMol7, a Ni-free stainless steel, was processed to obtain a higher nitrogen content by pressurized electroslag remelting. The martensite in N10CrNiMol7 1 was homogeneously distributed in the ferrite and obtained a near-constant volume fraction as a function of intercritical annealing temperature. Microprobe analysis and microhardness measurements of the martensite con-stituent suggested that up to 0.4 pct N was dissolved in the austenite before quenching. Austenite formation, martensite transformation, undissolved nitrides, and retained austenite were evaluated by transmission electron microscopy (TEM). The Ni-containing alloy exhibited classic dual-phase tensile behavior in that continuous yielding was observed together with good combinations of ultimate tensile strength and total elongation. The martensite constituent in alloy N20CrMol7 was concen-trated within bands. Comparison of tensile properties of the two alloys at similar volume fractions and hardness levels of martensite and ferrite showed that the microstructure containing banded mar-tensite had inferior combinations of strength and ductility. The degradation of tensile ductility was accompanied by a fracture mode transition from microvoid coalescence to transgranular cleavage. The deformation and fracture behavior of both alloys were related to the microstructure.  相似文献   

20.
The mushy zone of an alloy is in nonequilibrium during solidification. The mechanical properties of alloys in this nonequilibrium mushy zone, especially at small liquid fractions, are closely related to the formation of hot tears during the solidification of castings. It is difficult to measure the mechanical properties in the nonequilibrium mushy zones of alloys at a small liquid fraction, as the liquid fraction decreases rapidly during heating and during the isothermal hold needed to measure mechanical properties, due to backdiffusion in the solid. This article describes a new experimental method for determining mechanical properties in the nonequilibrium mushy zones of alloys. Initial results indicate that the method is better than traditional methods in capturing the brittle nature of alloys at temperatures close to the nonequilibrium solidus temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号